Search results

1 – 10 of over 2000
Article
Publication date: 14 March 2022

Dongju Chen, Xuan Zhang, Kun Sun and Jinwei Fan

This paper aims to study the influence degree of three factors affecting the vibration amplitude of aerostatic spindle and optimizes each factor.

Abstract

Purpose

This paper aims to study the influence degree of three factors affecting the vibration amplitude of aerostatic spindle and optimizes each factor.

Design/methodology/approach

The vibration amplitude of the spindle is characterized according to internal structure and operating characteristics of aerostatic spindle. The radial and axial vibration models of aerostatic spindle were established by the spring-damper system. The influence degree of main influencing factors on the spindle vibration amplitude was investigated through correlation analysis.

Findings

The results indicate that the crucial factor is aerostatic spindle speed and experiments validated that increasing spindle speed can enhance spindle stability. The influence of three factors on radial vibration is greater than that on axial vibration. Finally, the values of optimal working parameters were obtained by genetic algorithm.

Originality/value

The method in this article can effectively predict aerostatic spindle vibration amplitude and perfect the stability of aerostatic spindle.

Article
Publication date: 8 February 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant…

Abstract

Purpose

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant gripper is used for assembly tasks such as peg-in-hole assembly. A compliant mechanism in the gripper introduces flexibility that may cause oscillation in the grasped object. Such a flexible gripper–object system can be considered as an under-actuated object held by the gripper and the oscillations can be attributed to transient disturbance of the robot itself. The commercially available robots do not have a control mechanism to reduce such induced vibration. Thus, this paper aims to propose a contactless vision-based approach for vibration suppression which uses a predictive vibrational amplitude error-based second-stage controller.

Design/methodology/approach

The proposed predictive vibrational amplitude error-based second-stage controller is a real-time vibration control strategy that uses predicted error to estimate the second-stage controller output. Based on controller output, input trajectories were estimated for the internal controller of the robot. The control strategy efficiently handles the system delay to execute the control input trajectories when the oscillating object is at an extreme position.

Findings

The present controller works along with the internal controller of the robot without any interruption to suppress the residual vibration of the object. To demonstrate the robustness of the proposed controller, experimental implementation on Asea Brown Boveri make industrial robot (IRB) 1410 robot with a low frame rate camera has been carried out. In this experiment, two objects have been considered that have a low (<2.38 Hz) and high (>2.38 Hz) natural frequency. The proposed controller can suppress 95% of vibration amplitude in less than 3 s and reduce the stability time by 90% for a peg-in-hole assembly task.

Originality/value

The present vibration control strategy uses a camera with a low frame rate (25 fps) and the delays are handled intelligently to favour suppression of high-frequency vibration. The mathematical model and the second-stage controller implemented suppress vibration without modifying the robot dynamical model and the internal controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 August 2020

Shanmukh Sudhir Arasavelli, Ramakrishna Konijeti and Govinda Rao Budda

This paper aims to deal with heat transfer enhancement because of transverse vibration on counter flow concentric pipe heat exchanger. Experiments were performed at different…

Abstract

Purpose

This paper aims to deal with heat transfer enhancement because of transverse vibration on counter flow concentric pipe heat exchanger. Experiments were performed at different vibrator positions with varying amplitudes and frequencies.

Design/methodology/approach

Tests are carried out at 4 different vibration frequencies (20, 40, 60 and 100 Hz), 3 vibration amplitudes (23, 46 and 69 mm) and at 3 vibrator positions (1/4, 1/2 and 3/4 of pipe length) with respect to hot water inlet under turbulent flow condition.

Findings

Experimental results indicate that Nusselt number is enhanced to a maximum extent of 44% with vibration when compared to Nusselt number without vibration at a frequency of 40 Hz, an amplitude of 69 mm and at a vibrator position of one-fourth of pipe length with respect to hot water inlet.

Originality/value

Empirical correlation is developed from experimental data to estimate the heat transfer coefficient with vibration for experimental frequency range with an error estimate of approximately ±10%.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 September 2009

M.A. Chowdhury and M.M. Helali

The purpose of this paper is to investigate experimentally the effect of external vertical vibration on wear property of mild steel.

654

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of external vertical vibration on wear property of mild steel.

Design/methodology/approach

A pin‐on‐disc apparatus capable of vibrating the test samples in a vertical direction is designed and fabricated. The experimental setup has the ability to vary the amplitudes and frequencies of vibration while velocity of vibration is kept constant. During the experiment, the frequency and amplitude of vibration are varied from 0 to 500 Hz and 0 to 200 μm, respectively.

Findings

Results show that the wear rate decreases with the increase of amplitude and frequency of vibration for mild steel. These results are analyzed by dimensional analysis to correlate the wear rate with sliding velocity, normal load, frequency and amplitude of vibration. The experimental results are also compared with those available in literature and simple physical explanations are provided. Considering the lack of correlation between wear rate and other vibration‐related operating parameters, the present research is started to find out suitable correlation and a way of reducing wear rate by applying known frequency and amplitude of vibration at a particular direction.

Practical implications

It is expected that the applications of these results will contribute to the improvement of different concerned mechanical systems.

Originality/value

The paper can be used for design‐related purposes.

Details

Industrial Lubrication and Tribology, vol. 61 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 December 2020

Nanshan Wang, Heng Liu, Qidan Wang, Shemiao Qi and Yi Liu

This study aims to obtain the dynamic behaviours of cracked rod-fastening rotor bearing system (RFBS), and experimental investigation was carried out to examine the dynamic…

Abstract

Purpose

This study aims to obtain the dynamic behaviours of cracked rod-fastening rotor bearing system (RFBS), and experimental investigation was carried out to examine the dynamic characteristics of this kind of assembled rotor bearing system with a transverse crack passing through the critical speed.

Design/methodology/approach

An experimental test rig of cracked RFBS was established for examining the vibration behaviours between intact and cracked system. The crack on the surface of a fastening rod was simulated by wire-electrode cutting processing method. The comprehensive analysis method of vibration was used to obtain the dynamic characteristics such as vibration amplitude, acceleration and whirling orbits before and after the critical speed as well as the instantaneous response in the process of speed up.

Findings

Some experimental vibration datum is obtained for cracked RFBS. The appearance of a crack will introduce the initial bending and make the vibration amplitude, acceleration and instant response in the process of speed up increase greatly as well as the change of whirling orbits.

Originality/value

The actual vibration characteristics for this complex assembled rotor system with a transverse crack are given passing through the critical speed. It can provide some useful help for monitoring the vibration behaviours of this kind of assembled rotor system as well as the detection of the crack fault.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0260/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 November 2020

Amir Hossein Rabiee and Mostafa Esmaeili

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Abstract

Purpose

This study aims to explore an active control strategy for attenuation of in-line and transverse flow-induced vibration (FIV) of two tandem-arranged circular cylinders.

Design/methodology/approach

The control system is based on the rotary oscillation of cylinders around their axis, which acts according to the lift coefficient feedback signal. The fluid-solid interaction simulations are performed for two velocity ratios (V_r = 5.5 and 7.5), three spacing ratios (L/D = 3.5, 5.5 and 7.5) and three different control cases. Cases 1 and 2, respectively, deal with the effect of rotary oscillation of front and rear cylinders, while Case 3 considers the effect of applied rotary oscillation to both cylinders.

Findings

The results show that in Case 3, the FIV of both cylinders is perfectly reduced, while in Case 2, only the vibration of rear cylinder is mitigated and no change is observed in the vortex-induced vibration of front cylinder. In Case 1, by rotary oscillation of the front cylinder, depending on the reduced velocity and the spacing ratio values, the transverse oscillation amplitude of the rear cylinder suppresses, remains unchanged and even increases under certain conditions. Hence, at every spacing ratio and reduced velocity, an independent controller system for each cylinder is necessary to guarantee a perfect vibration reduction of front and rear cylinders.

Originality/value

The current manuscript seeks to deploy a type of active rotary oscillating (ARO) controller to attenuate the FIV of two tandem-arranged cylinders placed on elastic supports. Three different cases are considered so as to understand the interaction of these cylinders regarding the rotary oscillation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2018

Imran Moulaalli Jamadar and Dipakkumar Vakharia

The main objective of the paper is to explore the theoretical correlation of base oil viscosity in grease and to study the effect of grease grade on mechanical vibrations

Abstract

Purpose

The main objective of the paper is to explore the theoretical correlation of base oil viscosity in grease and to study the effect of grease grade on mechanical vibrations associated with the damaged rolling bearings.

Design/methodology/approach

For theoretical purposes, formulation theory of dimensional analysis was implemented. Experiments were then performed on the test bearings lubricated with three different types of greases, namely, SKF LGHP2, SKF LGMT3 and SKF LGWA2.

Findings

The numerical results obtained from the theoretical model along with the results of experiments show that the vibration amplitudes of the defective bearings come down to a lower level when it is lubricated with the grease of a higher base oil viscosity.

Research limitations/implications

The promising results from the theoretical model make it usable for the practical rotating machineries applying a variety of the rolling bearings. Consequently, if the bearing is not severely damaged, its performance can be increased by lubricating it with thicker grease.

Originality/value

Despite many significant contributions in the field to detect the presence of defects, not many studies have been performed that relate the lubrication condition of the rolling bearings with the vibration response, because around 50-75% of the bearing failures are attributed to be lubrication related. Hence, there is need to develop a mathematical model that can correlate the vibration severity of the bearings with viscosity of the lubricant oil in the greases along with other design and operating parameters.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 March 2011

Jinxue Sui, Xia Zhang, Li Yang, Zhilin Zhu and Zhang Xin

Vibration measurement is needed in many industrial production processes, such as equipment monitoring, fault diagnosis, and noise analysis and eliminating and so on. The purpose…

Abstract

Purpose

Vibration measurement is needed in many industrial production processes, such as equipment monitoring, fault diagnosis, and noise analysis and eliminating and so on. The purpose of this paper is to propose a simple vibration testing system which includes the laser, the string, position sensitive detector (PSD) and the corresponding signal processing circuit.

Design/methodology/approach

PSD is an optical semiconductor sensor that can fast locate the luminous spot position precisely, which means that it can output different electric current according to the luminous spot at different position of its surface. Moreover, the experiment on PSD sensor using different vibration source and frequency had been carried out. Finally, the vibration waveform of the luminous spot on PSD photosurface was obtained.

Findings

According to the experimental results, each kind of vibration parameter with different vibration source, such as vibration frequency and amplitude can be calculated.

Originality/value

The experimental results agreed with the actual parameter, which showed PSD not only had its own good qualities in the position measurement, but also had the unique superiority in the vibration measurement.

Details

Sensor Review, vol. 31 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 January 2023

Sandeep Rangrao Desai and Mangalsing Narsing Sonare

The prediction of critical velocity at instability threshold for shell and tube heat exchangers is important to avoid failure of tubes as a result of flow-induced vibrations due…

65

Abstract

Purpose

The prediction of critical velocity at instability threshold for shell and tube heat exchangers is important to avoid failure of tubes as a result of flow-induced vibrations due to water cross flow. The flow-induced vibration in finned tube heat exchangers is affected by various parameters such as fin height, fin pitch, fin material, tube array, pitch ratio, fin type, fluid velocity etc. In this paper, an experimental investigation of fluid elastic instability in shell and tube heat exchangers is carried out by subjecting normal square finned tube arrays of pitch ratio 1.79 to water cross flow.

Design/methodology/approach

The five tube arrays, namely plain array, two finned tube arrays with 3 fpi and 9 fpi fin density, and two finned tube arrays with 3 mm and 6 mm fin height are tested in the experimental test setup with water flow loop and vibration measurement system. The research objective is to evaluate the effect of fin density and fin height on the instability threshold. The critical velocity at instability threshold is determined to characterize the fluid elastic instability behavior of different tube arrays. The vortex shedding behavior of the tube arrays is also studied by determining Strouhal number corresponding to the small peaks before fluid elastic instability.

Findings

The fluid elastic instability behavior of the tube arrays was found to be the function of fin tube parameters. The experimental results indicate that an increase in fin density and fin height results in delaying the instability threshold for finned tube arrays. It is also observed that critical velocity at instability is increased for finned tube arrays compared to plain tube arrays of the same pitch ratio. The design modifications in the outer box have resulted in further reduction in the natural frequency. This enabled to reach clear instability for all the five-tube arrays.

Originality/value

The research data add the value to the present body of knowledge by knowing the effect of fin height and fin density on the fluid elastic instability threshold of normal square finned tube arrays subjected to water cross flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 2000