Search results

1 – 10 of over 14000
Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2289

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 November 2017

Jeng-Haur Horng, Shin-Yuh Chern, Chi-Lin Li and Yang-Yuan Chen

This paper aims to investigate the temperature and wear properties of vertical ball screws and to discuss the surface design of ball screws in industrial applications.

Abstract

Purpose

This paper aims to investigate the temperature and wear properties of vertical ball screws and to discuss the surface design of ball screws in industrial applications.

Design/methodology/approach

The energy equation of the screw surface considering the frictional heat was established to verify the surface temperature of the ball screw. X-ray diffraction was used to examine the micro-contact temperature between the ball and screw. Debris size and density were examined to investigate wear properties of ball screws and to study the relationship of wear debris and temperature.

Findings

First, the main energy source for the surface temperature of high speed vertical ball screws is derived from friction force between ball and screw. Second, the temperature rise between the ball and screw has great relevance with wear debris concentration. Third, the surface temperature of the screw is higher than between the nut and ball for high speed vertical ball screws due to high convection heat transfer. The contact temperature of the nut near the flange is smaller than that of the nut away from the flange end due to the high contact load and thermal conduction. Finally, correlation of particle size and surface roughness value for vertical ball screws was established, and its effects on contact temperature were studied. The theoretical analysis and experiments will help to characterize the design and manufacture of vertical ball screws.

Originality/value

The surface temperature and micro-contact temperature analytical model were established to study the ball screw design. Based on the surface-particle micro-contact temperature balance, the optimal range of surface roughness was designed for vertical ball screws, considering the wear debris and micro-contact temperature.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 April 2022

Emmanuel Imuetinyan Aghimien and Danny Hin Wa Li

Daylight plays a crucial role in the attainment of building energy savings. Harnessing daylight in building designs will require the need for daylight illuminance data. However…

65

Abstract

Purpose

Daylight plays a crucial role in the attainment of building energy savings. Harnessing daylight in building designs will require the need for daylight illuminance data. However, daylight illuminance data are scarce due to few measuring stations. Aside from being sparse, illuminance measuring stations can be expensive to set up, thus making the luminous efficacy model a better alternative. Hence, this study attempted to model horizontal luminous efficacies under the 15 Commission internationale de l'éclairage (CIE) standard skies. Therefrom, daylight illuminance was estimated from a proposed vertical luminous efficacy model.

Design/methodology/approach

Measured solar irradiance, daylight illuminance and luminance distribution data were gathered from the local measuring station in Hong Kong. The luminance distribution data were used to classify the skies into the 15 CIE standard skies. Next, the solar irradiance and daylight data were used to derive the horizontal luminous efficacies under each standard sky. Furthermore, a vertical luminous efficacy model developed using the measured data was described, and this was used to predict vertical illuminance.

Findings

It was observed that Skies 1, 8 and 13 seem to be predominant in Hong Kong. Also, the result showed that constant luminous efficacies could be used for deriving illuminance data. Furthermore, horizontal luminous efficacy ranged from 40 to 190lm/W, indicating that daylight can provide sufficient visibility during working hours. The vertical luminous efficacy model proves to offer reasonable estimations of vertical illuminance data.

Research limitations/implications

Further work needs to be done with more measured data to cover for spring seasons. The described model still needs to be fitted with different world climates to ascertain its universal applicability. The evaluations need to be done under obstructed sky conditions to cater for dense and clustered urban centres.

Practical implications

The discussed luminous efficacy model could be used to derive illuminance data in the absence of measured daylight illuminance data, especially in the subtropical region. Also, the comparative advantage of daylight over artificial lighting was highlighted in this study.

Originality/value

Unlike previous studies, this paper discusses the luminous efficacies of global, direct and diffuse components under the 15 CIE standard skies. Furthermore, the described luminous efficacy analysis provides an approach for deriving vertical and horizontal illuminance data. Such vertical data will be required for analysing building lighting requirements, sensible heat from electric lighting, and energy savings from daylighting controls. Also, the information on horizontal luminous efficacies will help evaluate solar roof and skylight designs.

Details

Smart and Sustainable Built Environment, vol. 11 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 June 2016

Ashraf Muhammad, Ali J Chamkha, S Iqbal and Masud Ahmad

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the…

Abstract

Purpose

The purpose of this paper is to report a numerical solution for the problem of steady, two dimensional boundary layer buoyant flow on a vertical magnetized surface, when both the viscosity and thermal conductivity are assumed to be temperature-dependent. In this case, the motion is governed by a coupled set of three nonlinear partial differential equations, which are solved numerically by using the finite difference method (FDM) by introducing the primitive variable formulation. Calculations of the coupled equations are performed to investigate the effects of the different governing parameters on the profiles of velocity, temperature and the transverse component of magnetic field. The effects of the thermal conductivity variation parameter, viscosity variation parameter, magnetic Prandtl number Pmr, magnetic force parameter S, mixed convection parameter Ri and the Prandtl number Pr on the flow structure and heat transfer characteristics are also examined.

Design/methodology/approach

FDM.

Findings

It is noted that when the Prandtl number Pr is sufficiently large, i.e. Pr=100, the buoyancy force that driven the fluid motion is decreased that decrease the momentum boundary layer and there is no change in thermal boundary layer is noticed. It is also noted that due to slow motion of the fluid the magnetic current generates which increase the magnetic boundary layer thickness at the surface. It is observed that the momentum boundary layer thickness is increased, thermal and magnetic field boundary layers are decreased with the increase of thermal conductivity variation parameter =100. The maximum boundary layer thickness is increased for =100 and there is no change seen in the case of thermal boundary layer thickness but magnetic field boundary layer is deceased. The momentum boundary layer thickness shoot quickly for =40 but is very smooth for =50.There is no change is seen for the case of thermal boundary layer and very clear decay for =40 is noted.

Originality/value

This work is original research work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 June 2016

Rui Wang and Youhei Kawamura

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted…

Abstract

Purpose

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted lightweight magnetic wheel units with relatively high attractive force and friction force.

Design/methodology/approach

The robot has the main advantages of being compact (352 × – 215 × – 155 mm), lightweight (2.3 kg without battery) and simple mechanical structure. It is not only able to climb vertical walls and follow circumferential paths, but also able to pass complex obstacles such as bolts, steps, convex and concave corners with almost any inclination regarding gravity. By using a servo as a compliant joint, the wheel base can be changed to enable the robot to overcome convex corners.

Findings

The experiment results show that the climbing robot has a good performance on locomotion, and it is successful in negotiating the complex obstacles. On the other hand, the limitations in locomotion of the robot are also presented.

Originality/value

Compared with the past researches, the robot shows good performance on overcoming complex obstacles such as concave corners, convex corners, bolts and steps on the steel bridge. Magnetic wheel with the characterization of compact size and lightweight is able to provide bigger adhesion force and friction coefficient.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 October 2011

Nikhil Padhye and Kalyanmoy Deb

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS…

1432

Abstract

Purpose

The goal of this study is to carry out multi‐objective optimization by considering minimization of surface roughness (Ra) and build time (T) in selective laser sintering (SLS) process, which are functions of “build orientation”. Evolutionary algorithms are applied for this purpose. The performance comparison of the optimizers is done based on statistical measures. In order to find truly optimal solutions, local search is proposed. An important task of decision making, i.e. the selection of one solution in the presence of multiple trade‐off solutions, is also addressed. Analysis of optimal solutions is done to gain insight into the problem behavior.

Design/methodology/approach

The minimization of Ra and T is done using two popular optimizers – multi‐objective genetic algorithm (non‐dominated sorting genetic algorithm (NSGA‐II)) and multi‐objective particle swarm optimizers (MOPSO). Standard measures from evolutionary computation – “hypervolume measure” and “attainment surface approximator” have been borrowed to compare the optimizers. Decision‐making schemes are proposed in this paper based on decision theory.

Findings

The objects are categorized into groups, which bear similarity in optimal solutions. NSGA‐II outperforms MOPSO. The similarity of spread and convergence patterns of NSGA‐II and MOPSO ensures that obtained solutions are (or are close to) Pareto‐optimal set. This is validated by local search. Based on the analysis of obtained solutions, general trends for optimal orientations (depending on the geometrical features) are found.

Research limitations/implications

A novel and systematic way to address multi‐objective optimization decision‐making post‐optimal analysis is shown. Simulations utilize experimentally derived models for roughness and build time. A further step could be the experimental verification of findings provided in this study.

Practical implications

This study provides a thorough methodology to find optimal build orientations in SLS process. A route to decipher valuable problem information through post‐optimal analysis is shown. The principles adopted in this study are general and can be extended to other rapid prototyping (RP) processes and expected to find wide applicability.

Originality/value

This paper is a distinct departure from past studies in RP and demonstrates the concepts of multi‐objective optimization, decision‐making and related issues.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Zhonghua Li, Ibrahim Kucukkoc, David Z. Zhang and Fei Liu

Surface roughness is an important evaluation index for industrial components, and it strongly depends on the processing parameters for selective laser molten Ti6Al4V parts. This…

3096

Abstract

Purpose

Surface roughness is an important evaluation index for industrial components, and it strongly depends on the processing parameters for selective laser molten Ti6Al4V parts. This paper aims to obtain an optimum selective laser melting (SLM) parameter set to improve the surface roughness of Ti6Al4V samples.

Design/methodology/approach

A response surface methodology (RSM)-based approach is proposed to improve the surface quality of selective laser molten Ti6Al4V parts and understand the relationship between the SLM process parameters and the surface roughness. The main SLM parameters (i.e. laser power, scan speed and hatch spacing) are optimized, and Ti6Al4V parts are manufactured by the SLM technology with no post processes.

Findings

Optimum process parameters were obtained using the RSM method to minimise the roughness of the top and vertical side surfaces. Obtained parameter sets were evaluated based on their productivity and surface quality performance. The validation tests have been performed, and the results verified the effectivity of the proposed technique. It was also shown that the top and vertical sides must be handled together to obtain better top surface quality.

Practical implications

The obtained optimum SLM parameter set can be used in the manufacturing of Ti6Al4V components with high surface roughness requirement.

Originality/value

RSM is used to analyse and determine the optimal combination of SLM parameters with the aim of improving the surface roughness quality of Ti6Al4V components, for the first time in the literature. Also, this is the first study which aims to simultaneously optimise the surface quality of top and vertical sides of titanium alloys.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1998

Kamesh Tata, Georges Fadel, Amit Bagchi and Nadim Aziz

An adaptive slicing algorithm that can vary the layer thickness in relation to local geometry is presented. The algorithm is based on three fundamental concepts: choice of…

1926

Abstract

An adaptive slicing algorithm that can vary the layer thickness in relation to local geometry is presented. The algorithm is based on three fundamental concepts: choice of criterion for accommodating complexities of surfaces, recognition of key characteristics and features of the object, and development of a grouping methodology for facets used to represent the object. Four criteria, cusp height, maximum deviation, chord length and volumetric error per unit length, are identified and the layer thickness is adjusted such that one of the four is met. Next, key characteristics of the object, such as horizontal and vertical surfaces, pointed edges and ends, are identified based on the local changes in surface complexity, and slice based feature recognition is introduced to identify the nature of a feature, protrusion or depression, by studying the slice data. Note that the present approach uses information only from the tessellated model, and thus is different from current implementations. Finally, the concept of grouping of the facets based on their vertex coordinates is developed to minimize the number of searches for possible intersection of the facets with a slice plane. The slicing algorithm is interfaced with adaptive laminated machining and the stereolithography process through a CNC post processor and a hatching algorithm respectively. A comparison of the estimated surface quality and build time indicates that adaptive slicing produces superior parts in a shorter build time. The implementation of this work is protected under US Patent laws (Patent # 5,596,504, January 1997).

Details

Rapid Prototyping Journal, vol. 4 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 April 2013

Aaron Parness and Clifford McKenzie

The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb vertical cinder block surfaces at a rate of 25 cm/s, make…

1446

Abstract

Purpose

The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb vertical cinder block surfaces at a rate of 25 cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters.

Design/methodology/approach

The platform uses a two‐wheel, two‐motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from a linear to rotary implementation, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspine's ability to opportunistically grip rough surfaces.

Findings

The DROP prototype was able to climb rough, vertical walls at a speed of 25 cm/s. These wheels were also deployed on a commercial platform, the ReconRobotics Scout, and demonstrated additional mobility capabilities such as curb mounting and stair climbing.

Originality/value

This robot is the first wheeled robot to use microspine technology. Various aspects of the prototype robot's design and performance are discussed, including the climbing mechanism, body design, and impact survival.

Details

Industrial Robot: An International Journal, vol. 40 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 November 2015

D. Srinivasacharya and P. Vijay Kumar

– The purpose of this paper is to study the mixed convection in a nanofluid along an inclined wavy surface embedded in a porous medium.

Abstract

Purpose

The purpose of this paper is to study the mixed convection in a nanofluid along an inclined wavy surface embedded in a porous medium.

Design/methodology/approach

The complex wavy surface is transformed to a smooth surface by employing a coordinate transformation. Using the similarity transformation, the governing equations are transformed into a set of ordinary differential equations and then lineralized using the successive linearization method. The Chebyshev pseudo spectral method is then used to solve linearized differential equations.

Findings

The effects of Brownian motion parameter, thermophoresis parameter, amplitude of the wavy surface, angle of inclination of the wavy surface for aiding and opposing flows on the non-dimensional velocity, temperature, nanoparticle volume fraction, heat and nanoparticle mass transfer rates are studied and presented graphically.

Originality/value

This is the first instance in which mixed convection, inclined wavy surface and nanofluid is employed to model fluid flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 14000