Search results

1 – 10 of 84
Article
Publication date: 26 December 2023

Hamza Berrehal, Roshanak Karami, Saeed Dinarvand, Ioan Pop and Ali Chamkha

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone…

Abstract

Purpose

This paper aims to study numerically the flow, heat transfer, and entropy generation of aqueous copper oxide-silver hybrid nanofluid over a down-pointing rotating vertical cone, with linear surface temperature (LST) and linear surface heat flux (LSHF), in the presence of a cross-magnetic field. In industrial applications, such as oil and gas plants, food industries, steel factories and nuclear packages, the real bodies may contain nonorthogonal walls and variable cross-section three-dimensional forms which this issue can clarify the importance of selective geometry in the present research.

Design/methodology/approach

The mass-based scheme is accomplished for the simulation, and the entropy generation and Bejan number will be analyzed in conjunction with the aforementioned model. It has been hypothesized that two types of boundary conditions (LST and LSHF) as well as five nanoparticle shapes (sphere, brick, cylinder, platelet and disk) present a collection of crucial results. The overseeing PDEs are changed over completely to the dimensionless ODEs, and these are solved by Runge–Kutta–Fehlberg approach combined with a shooting methodology for certain values of physical parameters.

Findings

Subsequent to the fantastic compromise of the computational outcomes with past reports, the outcomes are introduced to conduct the investigation of the hydrodynamics/thermal boundary layers, the skin friction and the Nusselt number, as well as entropy generation and Bejan number. A state of hybrid nanofluid, which exhibits a remarkable increase in heat transfer in comparison to the states of mono-nanofluid and regular fluid, has been found to have the highest Nusselt number; however, the skin friction values should always be taken into account and managed. The entropy generation improves with the mass of the second nanoparticle (silver), while the opposite pattern is exhibited for the Bejan number. Furthermore, the lowest value of entropy generation number belongs to the cylindrical shape of nanoparticles in the LST case. In final, a significant accomplishment of the current study is the accurate output of the mass-based scheme for an entropy analysis problem.

Originality/value

To the best of the authors’ knowledge, for the first time, in this study, a new development of natural convective flow of a hybrid nanofluid about the warmed (LST and LSHF) and down-pointing rotating vertical cone by the mass-based algorithm has been presented. The applied methodology considers the masses of base fluid (water) and nanoparticles (Ag and CuO) as an alternative to the first and second nanoparticles volume fraction. Indeed, the combination use of the Tiwari–Das nanofluid model and the mass-based hybridity algorithm for the entropy generation analysis can be the main novelty of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2023

Mustafa Turkyilmazoglu

The fluid flow and heat transfer between a rotating cone above a stretching disk is the prime purpose of the current work. Making use of suitable similarity transformations, it is…

137

Abstract

Purpose

The fluid flow and heat transfer between a rotating cone above a stretching disk is the prime purpose of the current work. Making use of suitable similarity transformations, it is shown that the physical phenomenon is represented by a system of similarity equations, which is compatible with that of literature in the absence of wall expansion.

Design/methodology/approach

Numerical simulation of the system enables us to seize the physical character of fluid filling the conical section as well as of the heat transfer, from small to adequately large gap sizes. How the surface expansion will contribute to the momentum and thermal layers; moreover, to the swirl angle from the disk wall, and heat transports from the cone and disk surfaces is studied in detail.

Findings

The results are clear evidences that the wall stretching completely changes the flow and heat behaviors within the conical gap. For instance, the centripetal/centrifugal flow properties of disk/cone are completely altered and the flow swirling angles are increased by means of the wall deformation.

Originality/value

The original value is that at small gap angles faster expansion of the wall overall leads to near-disk surface cooling, while causing the heated region near the cone surface, which has physical implications in practical applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2023

Tahir Naseem and Azeem Shahzad

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by…

Abstract

Purpose

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by considering magnetic, Joule heating and viscous dissipation effects. Furthermore, it studies the irreversibility caused by the flow of a hydromagnetic nanofluid past a radiated stretching sheet by considering different shapes of TiO2 and Cu nanoparticles with water as the base fluid.

Design/methodology/approach

In this study, the authors investigated entropy production in an unsteady two-dimensional magneto-hydrodynamic nanofluid regime using water as the base fluid and five unique TiO2 and Cu nanoparticle morphologies. Using appropriate similarity transformations, the controlling nonlinear system of partial differential equations is transformed into a system of ordinary differential equations. The shooting technique with Runge–Kutta method was then used to solve these equations quantitatively. The findings of this study are depicted graphically, and the skin friction corresponding to various nanoparticle geometries and physical parameter variations is tabulated.

Findings

To assess the reliability of the current findings, a tabular representation of the data was compared to that of previously published studies. It is noted that a reduction in thermal energy was detected as a result of the higher levels of Prandtl number (Pr). It is further analysed that the highest heat energy generation of TiO2 nanoparticles was larger than that of Cu nanoparticles. The most important finding was that the sphere-shaped Cu/H2O nanofluid had the lowest velocity and greatest temperature. Also, Cu nanoparticles in the shape of platelets generate the most entropy, while TiO2 nanoparticles in the shape of spheres generate the least.

Originality/value

To the best of the knowledge of the authors, the attempt to investigate the previously unexplored shape effects of TiO2 and Cu nanoparticles on the heat transfer enhancement and inherent irreversibility caused by hydromagnetic nanofluid flow past a radiated stretching sheet with magnetic, Joule heating and viscous dissipation effects. This study fills this gap in the existing literature and encourages scientists, engineers and businesses to do more research in this area. This model can be used to improve heat transfer in systems that use renewable energy, thermal management in industry and the processing of materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2024

Umer Farooq, Amara Bibi, Javeria Nawaz Abbasi, Ahmed Jan and Muzamil Hussain

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon…

Abstract

Purpose

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon dioxide (SiO2) and titanium dioxide (TiO2) are regarded as nanoparticles, with water serving as the base fluid. The mathematical model incorporates momentum boundary layer and energy equations. The Grinberg term for the viscous dissipation and the wall parallel Lorentz force coming from the Riga plate are taken into consideration in the context of the energy equation.

Design/methodology/approach

Through the use of appropriate nonsimilar transformations, the governing system is transformed into nonlinear nondimensional partial differential equations (PDEs). The numerical method bvp4c (built-in package for MATLAB) is used in this study to simulate governing equations using the local non-similarity (LNS) approach up to the second truncation level.

Findings

Numerous graphs and numerical tables expound on the physical properties of the nanofluid temperature and velocity profiles. The local Nusselt correlations and the drag coefficient for pertinent parameters have been computed in tabular form. Additionally, the temperature profile drops while the velocity profile increases when the mixed convection parameter is included to oppose the flow.

Originality/value

The fundamental goal of this work is to comprehend how ternary nanofluids move towards a vertical Riga plate in a mixed convective domain with stagnation point flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 August 2023

P. Sudarsana Reddy and Paluru Sreedevi

Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present…

Abstract

Purpose

Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present work. Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.

Design/methodology/approach

Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.

Findings

The sway of these influenced parameters on standard rates of heat transport, nanoparticles Sherwood number and Sherwood number of microorganisms is also illustrated through graphs. It is perceived that the rates of heat transport remarkably intensifies inside the cavity region with amplifying thermophoresis number values.

Originality/value

The research work carried out in this paper is original and no part is copied from others’ work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 March 2023

Shufeng Tang, Renjie Huang, Guoqing Zhao and Guoqing Wang

The purpose of this paper is that the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in…

Abstract

Purpose

The purpose of this paper is that the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in unstructured environment under the connection of the cone–hole docking mechanism.

Design/methodology/approach

An arc-shaped docking cone head with a posture-maintaining spring and two arc-shaped connecting rods that formed a ring round hole were designed to achieve large tolerance docking. Before active locking, the coordination between structures was used to achieve passive locking, which mitigated the docking impact of modular robots in unstructured environment. Using the locking ring composed of the two arc-shaped connecting rods, open-loop and closed-loop motion characteristics were obtained through the mutual motion of the connecting rod and the sliding block to achieve active locking, which not only ensured high precision docking, but also achieved super docking stability.

Findings

The cone–hole docking mechanism had the docking tolerance performance of position deviation of 6mm and pitch deviation of 8° to achieve docking of six degrees of freedom (6-DOF), which had a load capacity of 230 N to achieve super docking stability. Under the connection of the cone–hole docking mechanism, the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in unstructured environment.

Originality/value

Based on mechanical analysis of universal models, a cone–hole docking mechanism combining active and passive functions, six-dimensional constraints could be implemented, was proposed in this paper. The characteristics of the posture-maintaining spring in the cone docking head and the compression spring at the two ends of two arc-shaped connecting rods were used to achieve docking with large tolerance. Passive locking and active locking modules were designed, mitigating impact load and the locking did not require power to maintain, which not only ensured high precision docking, but also achieved super docking stability.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 June 2023

Vladimir Kobelev

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel…

Abstract

Purpose

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The thickness is assumed to be variable along the meridional and parallel coordinates of conical coordinate system. The calculation of the Belleville springs includes the cases of the free gliding edges and the edges on cylindric curbs, which constrain the radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.

Design/methodology/approach

In the current manuscript, the authors examine the Belleville spring with the variable thickness. The calculation of the Belleville springs investigates the free gliding edges and the edges on cylindric curbs with the constrained radial movement. The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations.

Findings

The developed equations demonstrate that the shift of the inversion point to the inside edge does not influence the bending of the cone. On the contrary, the character of the extensional deformation (circumferential strain) of the middle surface alternates significantly. The extension of the middle surface of free gliding spring occurs outside the inversion. The middle surface of the free gliding spring squeezes inside the inversion point. Contrarily, the complete middle surface of the disk spring on the cylindric curb extends. This behavior influences considerably the function of the spring.

Research limitations/implications

A slotted disk spring consists of two segments: a disk segment and a number of lever arm segments. Currently, the calculation of slotted disk spring is based on the SAE formula (SAE, 1996). This formula is limited to a straight slotted disk spring with freely gliding inner and outer edges.

Practical implications

The equations developed here are based on common assumptions and are simple enough to be applied to the industrial calculations. The developed method is applicable for disk springs with radially constrained edges. The vertical displacements of a disk spring result from an axial load uniformly distributed on inner and outer edges. The method could be directly applied for calculation of slotted disk springs.

Originality/value

The nonlinear governing equations for the of Belleville spring centres were derived. The equations describe the deformation and stresses of thin and moderately thick washers. The variation method is applicable for the disc springs with free gliding and rigidly constrained edges. The developed method is applicable for Belleville spring with radially constrained edges. The vertical displacements of a disc spring result from an axial load uniformly distributed on inner and outer edges.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 June 2023

Pawan Bishnoi and Pankaj Chandna

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Abstract

Purpose

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Design/methodology/approach

The geometric accuracy has been measured in terms of half-cone-angle, concentricity, roundness and wall-straightness errors. The Taguchi Orthogonal-Array L9 with desirability-function-analysis has been used to achieve improved accuracy.

Findings

To achieve maximum geometric accuracy, the optimum setting having a tooltip diameter of 10 mm, a step-size of 0.2 mm and a tool rotation speed (TRS) of 900 RPM has been derived. With this setting, the half-cone-angle accuracy increases by 42.96%, the concentricity errors decrease by 47.36%, the roundness errors decline by 45.2% and the wall straightness errors reduce by 1.06%.

Practical implications

Superalloy 625 is a widespread nickel-based alloy, finding enormous applications in aerospace, marine and chemical industries.

Originality/value

It has been recommended to increase TRS, reduce step-size and use moderate size tooltip diameter to enhance geometric accuracy. Step-size has been found to be the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 84