Search results

1 – 10 of 22
Article
Publication date: 6 July 2023

K. Thirumalaisamy and A. Subramanyam Reddy

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…

Abstract

Purpose

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.

Design/methodology/approach

The cavity inclination angle is fixed ω = 0 in case (I) and ω=π4 in case (II). The traditional fluid is water, and Fe3O4+MWCNT+Cu/H2O is treated as a working fluid. Ternary nanofluid's thermophysical properties are considered, according to the Tiwari–Das model. The marker-and-cell numerical scheme is adopted to solve the transformed dimensionless mathematical model with associated initial–boundary conditions.

Findings

The average heat transfer rate is computed for four combinations of ternary nanofluids: Fe3O4(25%)+MWCNT(25%)+Cu(50%),Fe3O4(50%)+MWCNT(25%)+Cu(25%),Fe3O4(33.3%)+MWCNT(33.3%)+Cu(33.3%) and Fe3O4(25%)+MWCNT(50%)+Cu(25%) under the influence of various physical factors such as volume fraction of nanoparticles, inclined magnetic field, cavity inclination angle, porous medium, internal heat generation/absorption and thermal radiation. The transport phenomena within the square cavity are graphically displayed via streamlines, isotherms, local and average Nusselt number profiles with adequate physical interpretations.

Practical implications

The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.

Social implications

The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.

Originality/value

To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective Fe3O4+MWCNT+Cu/H2O ternary nanofluid flow and heat transmission filled in porous square cavities with an inclined cavity angle. The computational outcomes revealed that the average heat transfer depends not only on the nanoparticle’s volume concentration but also on the existence of heat source and sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 October 2023

Francis O. Uzuegbunam, Fynecountry N. Aja and Eziyi O. Ibem

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with…

Abstract

Purpose

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with the most significant influence on the thermal comfort of hospital buildings during the hot-dry season in the hot-humid tropics of Southeast Nigeria.

Design/methodology/approach

Field measurements, physical observations and a questionnaire survey of 60 occupants of the wards of the Joint Presbyterian Hospital, Uburu in Ebonyi State, Nigeria were undertaken. The data were analysed using Humphreys' neutral temperature formula, descriptive statistics and multiple regression analysis.

Findings

The results revealed that the neutral temperature for the wards ranges from 26.2 °C to 29.9 °C, the thermal condition in the wards was not comfortable because it failed to meet the ASHRAE Standard 55 as only 65% of the occupants said the thermal condition was acceptable. The number and sizes of windows, building orientation, the presence of high-level windows and higher headroom significantly influenced the occupants' thermal comfort vote.

Practical implications

This research is valuable in estimating comfort temperature and identifying aspects that require attention in enhancing the capacity of NVH wards to effectively meet the thermal comfort needs of occupants in the hot-humid tropics of Southeast Nigeria and other regions that share similar climatic conditions.

Originality/value

To the best of the authors’ knowledge, this is the first study of this nature that provides valuable feedback for building design professionals on the performance of existing hospital buildings in meeting users' thermal comfort needs in the hot-dry season of the hot-humid tropics in Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Book part
Publication date: 18 January 2024

Mahendra Gooroochurn

The need to design buildings with due consideration for bioclimatic and passive design is central to promoting sustainability in the built environment from an energy perspective…

Abstract

The need to design buildings with due consideration for bioclimatic and passive design is central to promoting sustainability in the built environment from an energy perspective. Indeed, the energy and atmosphere considerations in building design, construction and operation have received the highest consideration in green building frameworks such as LEED and BREEAM to promote SDG 9: Industry, Innovation and Infrastructure and SDG 11: Sustainable Cities and Communities and contributing directly to support SDG 13: Climate Action. The research literature is rich of findings on the efficacy of passive measures in different climate contexts, but given that these measures are highly dependent on the prevailing weather conditions, which is constantly in evolution, disturbed by the climate change phenomenon, there is pressing need to be able to accurately predict such changes in the short (to the minute) and medium (to the hour and day) terms, where AI algorithms can be effectively applied. The dynamics of the weather patterns over seasons, but more crucially over a given season means that optimum response of building envelope elements, specifically through the passive elements, can be reaped if these passive measures can be adapted according to the ambient weather conditions. The use of representative mechatronics systems to intelligently control certain passive measures is presented, together with the potential use of artificial intelligence (AI) algorithms to capture the complex building physics involved to predict the expected effect of weather conditions on the indoor environmental conditions.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

226

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 2 February 2023

Ulrika Uotila and Arto Saari

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies…

Abstract

Purpose

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies to improve IAQ in a naturally ventilated school are rare since conventional methods, such as window opening, are often inappropriate. This paper aims to present an investigation of strategies to relieve health symptoms among school occupants in naturally ventilated school in Finland.

Design/methodology/approach

A case study approach is adopted to thoroughly investigate the process of generating the alternatives of ventilation redesign in a naturally ventilated school where there have been complaints of health symptoms. First, the potential sources of the occupants’ symptoms are identified. Then, the strategies aiming to reduce the symptoms are compared and evaluated.

Findings

In a naturally ventilated school, health symptoms that are significantly caused by insufficient ventilation can be potentially reduced by implementing a supply and exhaust ventilation system. Alternatively, it is possible to retain the natural ventilation with reduced number of occupants. The selected strategy would depend considerably on the desired number of users, the budget and the possibilities to combine the redesign of ventilation with other refurbishment actions. Furthermore, the risk of poorer indoor air caused by the refurbishment actions must also be addressed and considered.

Practical implications

This study may assist municipal authorities and school directors in decisions concerning improvement of classroom IAQ and elimination of building-related symptoms. This research provides economic aspects of alternative strategies and points out the risks related to major refurbishment actions.

Originality/value

Since this study presents a set of features related to indoor air that contribute to occupants’ health as well as matters to be considered when aiming to decrease occupants’ symptoms, it may be of assistance to municipal authorities and practitioners in providing a healthier indoor environment for pupils and teachers.

Details

Facilities, vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 16 February 2024

Shahla Safwat Ravhee and Sazdik Ahmed

This paper aims to examine how the interrelation between architecture and the physical environment came to prominence and influenced the pioneering modernist architects to acquire…

Abstract

Purpose

This paper aims to examine how the interrelation between architecture and the physical environment came to prominence and influenced the pioneering modernist architects to acquire the features of modern architecture that the British modernists later adopted. How the post-war urban poor of Britain, suffering from ill-health and dire need of sun, air and a good environment, played an essential role in alleviating the environmental concerns of the modern movement architects.

Design/methodology/approach

The methodology of this research involves a comprehensive architectural analysis of the Finsbury Health Centre alongside an in-depth historical investigation of modernist design principles. This review article examines books, articles and some archival materials, such as recordings, pictures, etc. on the early phase of British modernism and its environmental dimension by looking at the works of historians, architects and critics.

Findings

Design based on modernist principles. While it can be seen as the political agenda of the Labor Party, this building was not only functionally efficient but also represented the biometric concerns of modern architecture with the most natural means.

Research limitations/implications

While this study provides valuable insights, it may be limited by historical documents and data availability.

Originality/value

The originality and value of this paper lie in its examination of the Finsbury Health Centre as a case study, shedding light on the environmental rhetoric of modernism in historic architecture. By providing a holistic assessment of the building’s environmental aspects, this research contributes to both architectural history and contemporary sustainable design practices.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

1917

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 November 2022

Merve Cerrahoğlu and Feray Maden

The most important need after natural disasters is the sheltering. However, most of the existing temporary shelters do not meet all requirements for long-term use and not provide…

Abstract

Purpose

The most important need after natural disasters is the sheltering. However, most of the existing temporary shelters do not meet all requirements for long-term use and not provide adequate flexibility within the space. This paper aims to develop a transitional postdisaster shelter transforming from a closed shape to an expanded form in response to changing functional and spatial needs of disaster victims. The study also proposes alternative unit combinations for various functions, and settlement layouts to create a comfortable living environment for occupants.

Design/methodology/approach

The research methodology is based on theoretical and design frameworks which requires inductive and deductive approaches. Forming the background of the study, the theoretical framework consists of four parts which are literature review on temporary shelters presenting state-of-the-art; determination of design guidelines and strategies based on shelter standards; identification of technical requirements; and analysis of existing temporary shelters. Having three parts, the design framework includes design of transformable transitional shelter based on three-dimensional modeling, creation of different unit combinations to be used for various purposes and development of settlement layouts as case studies.

Findings

The analysis conducted in this study demonstrates that most of the existing temporary shelters have limited geometric configurations and major problems in terms of their performance, transportation and storage. On the other hand, the transformable shelter proposed by the authors can provide form and spatial flexibilities thanks to its expansion properties, occupy less space for transportation, easily be transported to any desired location in its compact state and be customized according to user needs. Several units can be combined either to serve larger families or to be used for different functions.

Originality/value

This paper contributes to the literature as presenting not only a theoretical framework on temporary shelters but also a design framework on transformable shelter design for the ones who are willing to develop similar transformable shelters based on the determined guidelines, strategies and requirements.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 26 January 2024

Débora Domingo-Calabuig, Javier Rivera-Linares, Laura Lizondo-Sevilla and José Luis Alapont-Ramón

City planning and construction have embraced circular economy principles, converting them into various indicators. Particularly in the European context, the question “what…

Abstract

Purpose

City planning and construction have embraced circular economy principles, converting them into various indicators. Particularly in the European context, the question “what architecture for circularity?” is answered with policies focusing on techniques, materials and disassembling construction. This paper analyzes a new approach to sustainable design and explores the concept of Km0 architecture. The objective is to demonstrate the design strategies of a contemporary architecture based on local resources and knowledge, an architecture that works with the shortest possible loop in circularity, i.e. with the cycle that consumes the least amount of energy.

Design/methodology/approach

The paper presents two ways of understanding sustainability in architecture: the first as a result of policies and the second associated with the design and innovative-based New European Bauhaus initiative. Within the scope of this last understanding, the authors analyze three cases on the Spanish Mediterranean coast that have recently received media attention and prominence. The selection responds to a specific climate adaption through a certain typological and functional diversity of the works.

Findings

The studied cases exhibit a more equitable and cost-effective circularity based on the time factor, have long life-cycle designs and serve as repositories of cultural identity. Km0 architecture reduces emissions using local resources and mitigates environmental conditions by combining traditional and modern design strategies.

Originality/value

This paper fulfills an identified need to study the local understandings of the built environment that would ensure a more fair and inclusive European green transformation.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 23 October 2023

Rabee Reffat and Julia Adel

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Abstract

Purpose

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Design/methodology/approach

The study methodology involves systematically developing and testing 18 different NVIs in six categories (glazing types, window films, external shading devices, automated internal shades, lighting systems and nanopainting) to identify the most effective individual NVIs. The impact of each individual NVI was examined on an exemplary university educational building in a hot climate zone in Egypt using a computational energy simulation tool, and the results were used to develop 39 combination scenarios of dual, triple and quadruple combinations of NVIs.

Findings

The optimal 10 combination scenarios of NVIs were determined based on achieving the highest percentages of energy reduction. The optimal percentage of energy reduction is 47.1%, and it was obtained from a combination of nanowindow film, nanopainting, LED lighting and horizontal louver external. The study found that appropriate mixture of NVIs is the most key factor in achieving the highest percentages of energy reduction.

Practical implications

These results have important implications for optimizing energy savings in existing buildings. The results can guide architects, owners and policymakers in selecting the most appropriate interventions in existing buildings to achieve the optimal reduction in energy consumption.

Originality/value

The novelty of this research unfolds in two significant ways: first, through the exploration of the potential effects arising from the integration of advanced NVIs into existing building facades. Second, it lies in the systematic development of a series of scenarios that amalgamate these NVIs, thereby pinpointing the most efficient strategies to optimize energy savings, all without necessitating any disruptive alterations to the existing building structure. These combination scenarios encompass the incorporation of both passive and active NVIs. The potential application of these diverse scenarios to a real-life case study is presented to underscore the substantial impact that these advanced NVIs can have on the energy performance of the building.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

1 – 10 of 22