Search results

1 – 3 of 3
Article
Publication date: 4 February 2021

Venkata Subba Rao M., B.J. Gireesha, Kotha Gangadhar, Manasa Seshakumari P. and S. Sindhu

This paper aims to address the magnetohydrodynamic boundary layer flow of hybrid mixture across a stretching surface under the influence of electric field.

Abstract

Purpose

This paper aims to address the magnetohydrodynamic boundary layer flow of hybrid mixture across a stretching surface under the influence of electric field.

Design/methodology/approach

The local similarity transformations are implemented to reformulate the governing partial differential equations into coupled non-linear ordinary differential equations of higher order. The numerical solutions are obtained for the simplified governing equations with the aid of finite difference technique.

Findings

The velocity, temperature and entropy generation are examined thoroughly for the effects of different budding parameters related to present analysis by means of graphs. It is obtained that owing to the effect of magnetic field along with slip factor, the fluid motion slowdown. However, the flow velocity enhances for the rising estimations of an electric field which tends to resolve sticky effects.

Originality/value

The three-dimensional plots are drawn to understand the nature of physical quantities. To ensure the precision, the obtained solutions are compared with the existing one for certain specific conditions. A good concurrence is observed between the proposed results and previously recorded outcomes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1998

I.V. Suresh, C. Padmakar, Prabha Padmakaran, M.V.R.L. Murthy, C.B. Raju, R.N. Yadava and K. Venkata Rao

The potential problems and their consequences due to fly ash disposal have been well studied around the world. Ash pond is a common available disposal facility for thermal…

2144

Abstract

The potential problems and their consequences due to fly ash disposal have been well studied around the world. Ash pond is a common available disposal facility for thermal power plants. The pond ash is subjected to weathering and the ions present in ash migrate to the soil and subsequently to the ground water over a period of time. A study has been carried out at Vijayawada Thermal Power Station (VTPS), Andhra Pradesh, India, to monitor the ground water quality in order to determine the potential impact of ash ponds. It has been found that ground water quality is deteriorated due to the presence of fly ash ions (macro and micro such as Fe, Ca, Mg etc.) which were leached out from the ash up to some extent. The contamination is likely to increase in the case of toxic and other ions with the passage of time. The presence of vegetative cover and plant growth on the down stream slope and fly ash ponds which are covered by soil may effectively control the leaching of ions.

Details

Environmental Management and Health, vol. 9 no. 5
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 28 December 2020

Patakota Sudarsana Reddy, Paluru Sreedevi and Kavaturi Venkata Suryanarayana Rao

The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based…

Abstract

Purpose

The purpose of this paper is to know the influence of heat generation/absorption and slip effects on heat and mass transfer flow of carbon nanotubes – water-based nanofluid over a rotating disk. Two types of carbon nanotubes, single and multi-walled, are considered in this analysis.

Design/methodology/approach

The non-dimensional system of governing equations is constructed using compatible transformations. These equations together with boundary conditions are solved numerically by using the most prominent Finite element method. The influence of various pertinent parameters such as magnetic parameter (0.4 – 1.0), nanoparticle volume fraction parameter (0.1 – 0.6), porosity parameter (0.3 – 0.6), radiation parameter (0.1 – 0.4), Prandtl number (2.2 – 11.2), space-dependent (−3.0 – 3.0), temperature-dependent (−3.0 – 1.5), velocity slip parameter (0.1 – 1.0), thermal slip parameter (0.1 – 0.4) and chemical reaction parameter (0.3 – 0.6) on nanofluids velocity, temperature and concentration distributions, as well as rates of velocity, temperature and concentration is calculated and the results are plotted through graphs and tables. Also, a comparative analysis is carried out to verify the validation of the present numerical code and found good agreement.

Findings

The results indicate that the temperature of the fluid elevates with rising values of nanoparticle volume fraction parameter. Furthermore, the rates of heat transfer rise from 4.8% to 14.6% when carbon nanotubes of 0.05 volume fraction are suspended into the base fluid.

Originality/value

The work carried out in this analysis is original and no part is copied from other sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3