Search results

1 – 10 of 21
Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1705

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 30 July 2019

Zhizhou Wu, Yiming Zhang, Guishan Tan and Jia Hu

Traffic density is one of the most important parameters to consider in the traffic operation field. Owing to limited data sources, traditional methods cannot extract traffic…

1407

Abstract

Purpose

Traffic density is one of the most important parameters to consider in the traffic operation field. Owing to limited data sources, traditional methods cannot extract traffic density directly. In the vehicular ad hoc network (VANET) environment, the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) interaction technologies create better conditions for collecting the whole time-space and refined traffic data, which provides a new approach to solving this problem.

Design/methodology/approach

On that basis, a real-time traffic density extraction method has been proposed, including lane density, segment density and network density. Meanwhile, using SUMO and OMNet++ as traffic simulator and network simulator, respectively, the Veins framework as middleware and the two-way coupling VANET simulation platform was constructed.

Findings

Based on the simulation platform, a simulated intersection in Shanghai was developed to investigate the adaptability of the model.

Originality/value

Most research studies use separate simulation methods, importing trace data obtained by using from the simulation software to the communication simulation software. In this paper, the tight coupling simulation method is applied. Using real-time data and history data, the research focuses on the establishment and validation of the traffic density extraction model.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 14 February 2023

Friso van Dijk, Joost Gadellaa, Chaïm van Toledo, Marco Spruit, Sjaak Brinkkemper and Matthieu Brinkhuis

This paper aims that privacy research is divided in distinct communities and rarely considered as a singular field, harming its disciplinary identity. The authors collected…

Abstract

Purpose

This paper aims that privacy research is divided in distinct communities and rarely considered as a singular field, harming its disciplinary identity. The authors collected 119.810 publications and over 3 million references to perform a bibliometric domain analysis as a quantitative approach to uncover the structures within the privacy research field.

Design/methodology/approach

The bibliometric domain analysis consists of a combined directed network and topic model of published privacy research. The network contains 83,159 publications and 462,633 internal references. A Latent Dirichlet allocation (LDA) topic model from the same dataset offers an additional lens on structure by classifying each publication on 36 topics with the network data. The combined outcomes of these methods are used to investigate the structural position and topical make-up of the privacy research communities.

Findings

The authors identified the research communities as well as categorised their structural positioning. Four communities form the core of privacy research: individual privacy and law, cloud computing, location data and privacy-preserving data publishing. The latter is a macro-community of data mining, anonymity metrics and differential privacy. Surrounding the core are applied communities. Further removed are communities with little influence, most notably the medical communities that make up 14.4% of the network. The topic model shows system design as a potentially latent community. Noteworthy is the absence of a centralised body of knowledge on organisational privacy management.

Originality/value

This is the first in-depth, quantitative mapping study of all privacy research.

Details

Organizational Cybersecurity Journal: Practice, Process and People, vol. 3 no. 2
Type: Research Article
ISSN: 2635-0270

Keywords

Content available
Book part
Publication date: 11 December 2023

Abstract

Details

Smart Cities for Sustainability
Type: Book
ISBN: 978-1-80455-902-4

Abstract

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 3
Type: Research Article
ISSN: 1742-7371

Open Access
Article
Publication date: 25 March 2021

Fareed Sheriff

This paper presents the Edge Load Management and Optimization through Pseudoflow Prediction (ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms;…

1971

Abstract

Purpose

This paper presents the Edge Load Management and Optimization through Pseudoflow Prediction (ELMOPP) algorithm, which aims to solve problems detailed in previous algorithms; through machine learning with nested long short-term memory (NLSTM) modules and graph theory, the algorithm attempts to predict the near future using past data and traffic patterns to inform its real-time decisions and better mitigate traffic by predicting future traffic flow based on past flow and using those predictions to both maximize present traffic flow and decrease future traffic congestion.

Design/methodology/approach

ELMOPP was tested against the ITLC and OAF traffic management algorithms using a simulation modeled after the one presented in the ITLC paper, a single-intersection simulation.

Findings

The collected data supports the conclusion that ELMOPP statistically significantly outperforms both algorithms in throughput rate, a measure of how many vehicles are able to exit inroads every second.

Originality/value

Furthermore, while ITLC and OAF require the use of GPS transponders and GPS, speed sensors and radio, respectively, ELMOPP only uses traffic light camera footage, something that is almost always readily available in contrast to GPS and speed sensors.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 5 June 2020

Zijun Jiang, Zhigang Xu, Yunchao Li, Haigen Min and Jingmei Zhou

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road…

1038

Abstract

Purpose

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.

Design/methodology/approach

This study included three steps, Step 1, extraction of feature points. After getting the image, the local features in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of feature points and trajectory generation.

Findings

Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.

Originality/value

The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of the lane-level positioning in some critical ITS applications.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 11 December 2020

Balamurugan Souprayen, Ayyasamy Ayyanar and Suresh Joseph K

The purpose of the food traceability is used to retain the good quality of raw material supply, diminish the loss and reduced system complexity.

1217

Abstract

Purpose

The purpose of the food traceability is used to retain the good quality of raw material supply, diminish the loss and reduced system complexity.

Design/methodology/approach

The proposed hybrid algorithm is for food traceability to make accurate predictions and enhanced period data. The operation of the internet of things is addressed to track and trace the food quality to check the data acquired from manufacturers and consumers.

Findings

In order to survive with the existing financial circumstances and the development of global food supply chain, the authors propose efficient food traceability techniques using the internet of things and obtain a solution for data prediction.

Originality/value

The operation of the internet of things is addressed to track and trace the food quality to check the data acquired from manufacturers and consumers. The experimental analysis depicts that proposed algorithm has high accuracy rate, less execution time and error rate.

Details

Modern Supply Chain Research and Applications, vol. 3 no. 1
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 18 July 2022

Youakim Badr

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input…

1268

Abstract

Purpose

In this research, the authors demonstrate the advantage of reinforcement learning (RL) based intrusion detection systems (IDS) to solve very complex problems (e.g. selecting input features, considering scarce resources and constrains) that cannot be solved by classical machine learning. The authors include a comparative study to build intrusion detection based on statistical machine learning and representational learning, using knowledge discovery in databases (KDD) Cup99 and Installation Support Center of Expertise (ISCX) 2012.

Design/methodology/approach

The methodology applies a data analytics approach, consisting of data exploration and machine learning model training and evaluation. To build a network-based intrusion detection system, the authors apply dueling double deep Q-networks architecture enabled with costly features, k-nearest neighbors (K-NN), support-vector machines (SVM) and convolution neural networks (CNN).

Findings

Machine learning-based intrusion detection are trained on historical datasets which lead to model drift and lack of generalization whereas RL is trained with data collected through interactions. RL is bound to learn from its interactions with a stochastic environment in the absence of a training dataset whereas supervised learning simply learns from collected data and require less computational resources.

Research limitations/implications

All machine learning models have achieved high accuracy values and performance. One potential reason is that both datasets are simulated, and not realistic. It was not clear whether a validation was ever performed to show that data were collected from real network traffics.

Practical implications

The study provides guidelines to implement IDS with classical supervised learning, deep learning and RL.

Originality/value

The research applied the dueling double deep Q-networks architecture enabled with costly features to build network-based intrusion detection from network traffics. This research presents a comparative study of reinforcement-based instruction detection with counterparts built with statistical and representational machine learning.

Open Access
Article
Publication date: 13 September 2022

Alireza Ansariyar and Milad Tahmasebi

This research paper aims to investigate the effects of gradual deployment of market penetration rates (MPR) of connected vehicles (MPR of CVs) on delay time and fuel consumption.

Abstract

Purpose

This research paper aims to investigate the effects of gradual deployment of market penetration rates (MPR) of connected vehicles (MPR of CVs) on delay time and fuel consumption.

Design/methodology/approach

A real-world origin-destination demand matrix survey was conducted in Boston, MA to identify the number of peak hour passing vehicles in the case study.

Findings

The results showed that as the number of CVs (MPR) in the network increases, the total delay time decreases by an average of 14% and the fuel consumption decreases by an average of 56%, respectively, from scenarios 3 to 15 compared to scenario 2.

Research limitations/implications

The first limitation of this study was considering a small network. The considered network shows a small part of the case study.

Originality/value

This study can be a milestone for future research regarding gradual deployment of CVs’ effects on transport networks. Efficient policy(s) may define based on the results of this network for Brockton transport network.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 21