Search results

1 – 3 of 3
Article
Publication date: 29 April 2014

Ardavan Dargahi, Stéphane Ploix, Alireza Soroudi and Frédéric Wurtz

The use of energy storage devices helps the consumers to utilize the benefits and flexibilities brought by smart networks. One of the major energy storage solutions is using…

Abstract

Purpose

The use of energy storage devices helps the consumers to utilize the benefits and flexibilities brought by smart networks. One of the major energy storage solutions is using electric vehicle batteries. The purpose of this paper is to develop an optimal energy management strategy for a consumer connected to the power grid equipped with Vehicle-to-Home (V2H) power supply and renewable power generation unit (PV).

Design/methodology/approach

The problem of energy flow management is formulated and solved as an optimization problem using a linear programming model. The total energy cost of the consumer is optimized. The optimal values of decision variables are found using CPLEX solver.

Findings

The simulation results demonstrated that if the optimal decisions are made regarding the V2H operation and managing the produced power by solar panels then the total energy payments are significantly reduced.

Originality/value

The gap that the proposed model is trying to fill is the holistic determination of an optimal energy procurement portfolio by using various embedded resources in an optimal way. The contributions of this paper are in threefold as: first, the introduction of mobile storage devices with a periodical availability depending on driving schedules; second, offering a new business model for managing the generation of PV modules by considering the possibility of grid injection or self-consumption; third, considering Real Time Pricing in the suggested formulation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 September 2021

Seyed Sajad Rezaei Nasab, Abbasali Tayefi Nasrabadi, Somayeh Asadi and Seiyed Ali Haj Seiyed Taghia

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings…

Abstract

Purpose

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings (NZEBs). However, to achieve more dependable results, proper energy analysis is needed to take into consideration the stochastic behavior of renewable energy, energy consumption in the building and vehicle use pattern. This study aims to stochastically model a building integrating photovoltaic panels as a microgeneration technology and EVs to meet NZEB requirements.

Design/methodology/approach

First, a multiobjective nondominated sorting genetic algorithm (NSGA-II) was developed to optimize the building energy performance considering panels installed on the façade. Next, a dynamic solution is implemented in MATLAB to stochastically model electricity generation using solar panels as well as building and EV energy consumption. Besides, the Monte Carlo simulation method is used for quantifying the uncertainty of NZEB performance. To investigate the impact of weather on both energy consumption and generation, the model is tested in five different climatic zones in Iran.

Findings

The results show that the stochastic simulation provides building designers with a variety of convenient options to select the best design based on level of confidence and desired budget. Furthermore, economic evaluation signifies that investing in all studied cities is profitable.

Originality/value

Considering the uncertainty in building energy demand and PV power generation as well as EV mobility and the charging–discharging power profile for evaluating building energy performance is the main contribution of this study.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 November 2015

R. Le Goff Latimier, B. Multon and H. Ben Ahmed

To foster the grid integration of both electric vehicles (EV) and renewable generators, the purpose of this paper is to investigate the possible synergies between these players so…

Abstract

Purpose

To foster the grid integration of both electric vehicles (EV) and renewable generators, the purpose of this paper is to investigate the possible synergies between these players so as to jointly improve the production predictability while ensuring a green mobility. It is here achieved by the mean of a grid commitment over the overall power produced by a collaborative system which here gathers a photovoltaic (PV) plant with an EV fleet. The scope of the present contribution is to investigate the conditions to make the most of such an association, mainly regarding to the management strategies and optimal sizing, taking into account forecast errors on PV production.

Design/methodology/approach

To evaluate the collaboration added value, several concerns are aggregated into a primary energy criterion: the commitment compliance, the power spillage, the vehicle charging, the user mobility and the battery aging. Variations of these costs are computed over a range of EV fleet size. Moreover, the influence of the charging strategy is specifically investigated throughout the comparison of three managements: a simple rule of thumb, a perfect knowledge deterministic case and a charging strategy computed by stochastic dynamic programming. The latter is based on an original modeling of the production forecast error. This methodology is carried out to assess the collaboration added value for two operators’ points of view: a virtual power plant (VPP) and a balance responsible party (BRP).

Findings

From the perspective of a BRP, the added value of PV-EV collaboration for the energy system has been evidenced in any situation even when the charging strategy is very simple. On the other hand, for the case of a VPP operator, the coupling between the optimal sizing and the management strategy is highlighted.

Originality/value

A co-optimization of the sizing and the management of a PV-EV collaborative system is introduced and the influence of the management strategy on the collaboration added value has been investigated. This gave rise to the presentation and implementation of an original modeling tool of the PV production forecast error. Finally, to widen the scope of application, two different business models have been tackled and compared.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3