Search results

1 – 10 of over 3000
To view the access options for this content please click here
Article
Publication date: 30 November 2018

Anand Jaiswal, Cherian Samuel and Chirag Chandan Mishra

The purpose of this paper is to provide a traffic route selection strategy based on minimum carbon dioxide (CO2) emission by vehicles over different route choices.

Abstract

Purpose

The purpose of this paper is to provide a traffic route selection strategy based on minimum carbon dioxide (CO2) emission by vehicles over different route choices.

Design/methodology/approach

The study used queuing theory for Markovian M/M/1 model over the road junctions to assess total time spent over each of the junctions for a route with junctions in tandem. With parameters of distance, mean service rate at the junction, the number of junctions and fuel consumption rate, which is a function of variable average speed, the CO2 emission is estimated over each of the junction in tandem and collectively over each of the routes.

Findings

The outcome of the study is a mathematical formulation, using queuing theory to estimate CO2 emissions over different route choices. Research finding estimated total time spent and subsequent CO2 emission for mean arrival rates of vehicles at junctions in tandem. The model is validated with a pilot study, and the result shows the best vehicular route choice with minimum CO2 emissions.

Research limitations/implications

Proposed study is limited to M/M/1 model at each of the junction, with no defection of vehicles. The study is also limited to a constant mean arrival rate at each of the junction.

Practical implications

The work can be used to define strategies to route vehicles on different route choices to reduce minimum vehicular CO2 emissions.

Originality/value

Proposed work gives a solution for minimising carbon emission over routes with unsignalised junctions in the tandem network.

Details

Management of Environmental Quality: An International Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Content available
Article
Publication date: 16 October 2017

Grzegorz Bocewicz, Mukund Nilakantan Janardhanan, Damian Krenczyk and Zbigniew Banaszak

The purpose of this paper is to focus on the reference model of a grid-like supply network that enables formulation of delivery routing and scheduling problems in the…

Abstract

Purpose

The purpose of this paper is to focus on the reference model of a grid-like supply network that enables formulation of delivery routing and scheduling problems in the context of the periodic vehicle routing problem.

Design/methodology/approach

The conditions for seamless (collision-free) synchronization of periodically executed local transport processes presented in this paper guarantee cyclic execution of supply processes, thereby preventing traffic flow congestion.

Findings

Systems that satisfy this characteristic, cyclic deliveries executed along supply chains are given and what is sought is the number of vehicles needed to operate the local transport processes in order to ensure delivery from and to specific loading/unloading points on given dates. Determination of sufficient conditions guaranteeing the existence of feasible solutions that satisfy these constraints makes it possible to solve the considered class of problems online.

Practical implications

The computer experiments reported in this paper show the possibilities of practical application of the proposed approach in the construction of decision support systems for food supply chain management.

Originality/value

The aim of the present work is to develop a methodology for the synthesis of regularly structured supply networks that would ensure fixed cyclic execution of local transport processes. The proposed methodology, which implements sufficient conditions for the synchronization of local cyclic processes, allows one to develop a method for rapid prototyping of supply processes that satisfies the time windows constraints given.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2019

Sanjay Jharkharia and Chiranjit Das

The purpose of this study is to model a vehicle routing problem with integrated picking and delivery under carbon cap and trade policy. This study also provides…

Abstract

Purpose

The purpose of this study is to model a vehicle routing problem with integrated picking and delivery under carbon cap and trade policy. This study also provides sensitivity analyses of carbon cap and price to the total cost.

Design/methodology/approach

A mixed integer linear programming (MILP) model is formulated to model the vehicle routing with integrated order picking and delivery constraints. The model is then solved by using the CPLEX solver. Carbon footprint is estimated by a fuel consumption function that is dependent on two factors, distance and vehicle speed. The model is analyzed by considering 10 suppliers and 20 customers. The distance and vehicle speed data are generated using simulation with random numbers.

Findings

Significant amount of carbon footprint can be reduced through the adoption of eco-efficient vehicle routing with a marginal increase in total transportation cost. Sensitivity analysis indicates that compared to carbon cap, carbon price has more influence on the total cost.

Research limitations/implications

The model considers mid-sized problem instances. To analyze large size problems, heuristics and meta-heuristics may be used.

Practical implications

This study provides an analysis of carbon cap and price model that would assist practitioners and policymakers in formulating their policy in the context of carbon emissions.

Originality/value

This study provides two significant contributions to low carbon supply chain management. First, it provides a vehicle routing model under carbon cap and trade policy. Second, it provides a sensitivity analysis of carbon cap and price in the model.

Abstract

Details

Freight Transport Modelling
Type: Book
ISBN: 978-1-78190-286-8

To view the access options for this content please click here
Article
Publication date: 28 March 2018

Oussama Senouci, Zibouda Aliouat and Saad Harous

This paper is a review of a number routing protocols in the internet of vehicles (IoV). IoV emphasizes information interaction among humans, vehicles and a roadside unit…

Abstract

Purpose

This paper is a review of a number routing protocols in the internet of vehicles (IoV). IoV emphasizes information interaction among humans, vehicles and a roadside unit (RSU), within which routing is one of the most important steps in IoV network.

Design/methodology/approach

In this paper, the authors have summarized different research data on routing protocols in the IoV. Several routing protocols for IoV have been proposed in the literature. Their classification is made according to some criteria such as topology-based, position-based, transmission strategy and network structure. This paper focuses on the transmission strategy criteria. There exist three types of protocols that are based on this strategy: unicast protocol, broadcast protocols and multicast protocols. This later type is classified into two subclasses: geocast and cluster-based protocols. The taxonomy of the transmission strategy is presented in this study. We discuss the advantages and disadvantages of each type with a general comparison between the five types.

Findings

The authors can deduce that many challenges are encountered when designing routing protocols for IoV.

Originality/value

A simple and well-explained presentation of the functioning of the IoV is provided with a comparison among each categories of protocols is well presented along with the advantages and disadvantages of each type. The authors examined the main problems encountered during the design of IoV routing protocol, such as the quick change of topology, the frequent disconnection, the big volume of data to be processed and stored in the IoV, and the problem of network fragmentation. This work explores, compares existing routing protocols in IoV and provides a critical analysis. For that, the authors extract the challenges and propose future perspectives for each categories of protocols.

Details

Sensor Review, vol. 39 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

To view the access options for this content please click here

Abstract

Details

City Logistics
Type: Book
ISBN: 978-0-08-043903-7

To view the access options for this content please click here
Book part
Publication date: 8 May 2003

Eiichi Taniguchi and Tadashi Yamada

This paper presents integrated models of probabilistic vehicle routing and scheduling model with time windows and dynamic traffic simulation. The probabilistic model…

Abstract

This paper presents integrated models of probabilistic vehicle routing and scheduling model with time windows and dynamic traffic simulation. The probabilistic model incorporates the uncertainty of travel times. After applying the models to test road network, incorporating the uncertainty of travel times using the models not only allows freight carriers to reduce their total costs, but also improves the environment in terms of decreasing CO2 emissions. As well, the paper investigated the effects and profitability of co-operative freight transport systems using a simulation model based on forecast vehicle routing and scheduling model. Results showed cooperative freight transport systems can lead to a substantial reduction in total delivery costs and total travel times within the whole road network.

Details

The Network Reliability of Transport
Type: Book
ISBN: 978-0-08-044109-2

To view the access options for this content please click here

Abstract

Details

Handbook of Transport Geography and Spatial Systems
Type: Book
ISBN: 978-1-615-83253-8

To view the access options for this content please click here
Article
Publication date: 14 December 2018

De-gan Zhang, Ya-meng Tang, Yu-ya Cui, Jing-xin Gao, Xiao-huan Liu and Ting Zhang

The communication link in the engineering of Internet of Vehicle (IOV) is more frequent than the communication link in the Mobile ad hoc Network (MANET). Therefore, the…

Abstract

Purpose

The communication link in the engineering of Internet of Vehicle (IOV) is more frequent than the communication link in the Mobile ad hoc Network (MANET). Therefore, the highly dynamic network routing reliability problem is a research hotspot to be solved.

Design/methodology/approach

The graph theory is used to model the MANET communication diagram on the highway and propose a new reliable routing method for internet of vehicles based on graph theory.

Findings

The expanded graph theory can help capture the evolution characteristics of the network topology and predetermine the reliable route to promote quality of service (QoS) in the routing process. The program can find the most reliable route from source to the destination from the MANET graph theory.

Originality/value

The good performance of the proposed method is verified and compared with the related algorithms of the literature.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000