Search results

1 – 10 of 96
Open Access
Article
Publication date: 14 May 2019

Haijian Li, Zhufei Huang, Lingqiao Qin, Shuo Zheng and Yanfang Yang

The purpose of this study is to effectively optimize vehicle lane-changing behavior and alleviate traffic congestion in ramp area through the study of vehicle lane-changing

1128

Abstract

Purpose

The purpose of this study is to effectively optimize vehicle lane-changing behavior and alleviate traffic congestion in ramp area through the study of vehicle lane-changing behaviors in upstream segment of ramp areas.

Design/methodology/approach

In the upstream segment of ramp areas under a connected vehicle environment, different strategies of vehicle group lane-changing behaviors are modeled to obtain the best group lane-changing strategy. The traffic capacity of roads can be improved by controlling group lane-changing behavior and continuously optimizing lane-changing strategy through connected vehicle technologies. This paper constructs vehicle group lane-changing strategies in upstream segment of ramp areas under a connected vehicle environment. The proposed strategies are simulated by VISSIM.

Findings

The results show that different lane-changing strategies are modeled through vehicle group in the upstream segment of ramp areas, which can greatly reduce the delay of ramp areas.

Originality/value

The simulation results verify the validity and rationality of the corresponding vehicle group lane-changing behavior model strategies, effectively standardize the driver's lane-changing behavior, and improve road safety and capacity.

Details

Smart and Resilient Transportation, vol. 1 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 8 September 2021

Haijian Li, Junjie Zhang, Zihan Zhang and Zhufei Huang

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control…

1033

Abstract

Purpose

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control under the environment of intelligent connected vehicles (ICVs) in the future.

Design/methodology/approach

By analyzing the traffic capacities and traffic behaviors of domestic and foreign weaving areas and combining them with field investigation, the paper proposes the active and fine lane management methods for ICVs to optimal driving behavior in a weaving area. The VISSIM simulation of traffic flow vehicle driving behavior in weaving areas of urban expressways was performed using research data. The influence of lane-changing in advance on the weaving area was evaluated and a conflict avoidance area was established in the weaving area. The active fine lane management methods applied to a weaving area were verified for different scenarios.

Findings

The results of the study indicate that ICVs complete their lane changes before they reach a weaving area, their time in the weaving area does not exceed the specified time and the delay of vehicles that pass through the weaving area decreases.

Originality/value

Based on the vehicle group behavior, this paper conducts a simulation study on the active traffic management control-oriented to ICVs. The research results can optimize the management of lanes, improve the traffic capacity of a weaving area and mitigate traffic congestion on expressways.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Book part
Publication date: 15 December 1998

Fung-Ling Leung and John Hunt

The paper considers the application of neural networks to model driver decisions to change lane on a dual carriageway road. The lane changing process is treated as consisting of…

Abstract

The paper considers the application of neural networks to model driver decisions to change lane on a dual carriageway road. The lane changing process is treated as consisting of two decisions, namely motivation and opportunity. Separate backpropagation neural networks are applied to represent each of the two decisions. The trained motivation and opportunity neural network models are linked to produce a layered network which represents the complete lane changing process. Separate models are developed to represent the nearside to offside lane changing decision, and the offside to nearside lane changing decision. This paper describes the development of the model of the nearside to offside lane changing decision.

For model development, data were collected from several subject vehicle drivers. The results are presented and the implications considered. Selected data were applied to train the neural networks and then an independent subset of data were used to assess performance. When the complete nearside lane changing neural network model was presented with the unseen test examples, 93.3% of the examples were correctly predicted as a lane change or no lane change. These results are shown to be a considerable improvement on those obtained previously.

Details

Mathematics in Transport Planning and Control
Type: Book
ISBN: 978-0-08-043430-8

Open Access
Article
Publication date: 13 September 2022

Haitao Ding, Wei Li, Nan Xu and Jianwei Zhang

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected…

Abstract

Purpose

This study aims to propose an enhanced eco-driving strategy based on reinforcement learning (RL) to alleviate the mileage anxiety of electric vehicles (EVs) in the connected environment.

Design/methodology/approach

In this paper, an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed for connected EVs. The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving. Moreover, this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.

Findings

To illustrate the performance for the EEDC-HRL, the controlled EV was trained and tested in various traffic flow states. The experimental results demonstrate that the proposed technique can effectively improve energy efficiency, without sacrificing travel efficiency, comfort, safety and lane-changing performance in different traffic flow states.

Originality/value

In light of the aforementioned discussion, the contributions of this paper are two-fold. An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space (EEDC-HRL) is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs. A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 28 August 2020

Qingying Wang, Rongjun Cheng and Hongxia Ge

The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow.

193

Abstract

Purpose

The purpose of this paper is to explore how curved road and lane-changing rates affect the stability of traffic flow.

Design/methodology/approach

An extended two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate is presented. The linear analysis of the new model is discussed, the stability condition and the neutral stability condition are obtained. Also, the mKdV equation and its solution are proposed through nonlinear analysis, which discusses the stability of the extended model in the unstable region. Furthermore, the results of theoretical analysis are verified by numerical simulation.

Findings

The empirical lane-changing rate on a curved road is an important factor, which can alleviate traffic congestion.

Research limitations/implications

This paper does not take into account the factors such as slope, the drivers’ characters and so on in the actual traffic, which will have more or less influence on the stability of traffic flow, so there is still a certain gap with the real traffic environment.

Originality/value

The curved road and empirical lane-changing rate are researched simultaneously in a two-lane lattice hydrodynamic models in this paper. The improved model can better reflect the actual traffic, which can also provide a theoretical reference for the actual traffic governance.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 11 April 2022

Jie Zhu, Said Easa and Kun Gao

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to…

2277

Abstract

Purpose

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to various negative impacts on traffic efficiency and safety. The connected and autonomous vehicles (CAVs), with their capabilities of real-time communication and precise motion control, hold a great potential to facilitate ramp merging operation through enhanced coordination strategies. This paper aims to present a comprehensive review of the existing ramp merging strategies leveraging CAVs, focusing on the latest trends and developments in the research field.

Design/methodology/approach

The review comprehensively covers 44 papers recently published in leading transportation journals. Based on the application context, control strategies are categorized into three categories: merging into sing-lane freeways with total CAVs, merging into sing-lane freeways with mixed traffic flows and merging into multilane freeways.

Findings

Relevant literature is reviewed regarding the required technologies, control decision level, applied methods and impacts on traffic performance. More importantly, the authors identify the existing research gaps and provide insightful discussions on the potential and promising directions for future research based on the review, which facilitates further advancement in this research topic.

Originality/value

Many strategies based on the communication and automation capabilities of CAVs have been developed over the past decades, devoted to facilitating the merging/lane-changing maneuvers at freeway on-ramps. Despite the significant progress made, an up-to-date review covering these latest developments is missing to the authors’ best knowledge. This paper conducts a thorough review of the cooperation/coordination strategies that facilitate freeway on-ramp merging using CAVs, focusing on the latest developments in this field. Based on the review, the authors identify the existing research gaps in CAV ramp merging and discuss the potential and promising future research directions to address the gaps.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1669

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 31 July 2021

Zhao Zhang and Xianfeng (Terry) Yang

This study aims to study the connected vehicle (CV) impact on highway operational performance under a mixed CV and regular vehicle (RV) environment.

Abstract

Purpose

This study aims to study the connected vehicle (CV) impact on highway operational performance under a mixed CV and regular vehicle (RV) environment.

Design/methodology/approach

The authors implemented a mixed traffic flow model, along with a CV speed control model, in the simulation environment. According to the different traffic characteristics between CVs and RVs, this research first analyzed how the operation of CVs can affect highway capacity under both one-lane and multi-lane cases. A hypothesis was then made that there shall exist a critical CV penetration rate that can significantly show the benefit of CV to the overall traffic. To prove this concept, this study simulated the mixed traffic pattern under various conditions.

Findings

The results of this research revealed that performing optimal speed control to CVs will concurrently benefit RVs by improving highway capacity. Furthermore, a critical CV penetration rate should exist at a specified traffic demand level, which can significantly reduce the speed difference between RVs and CVs. The results offer effective insight to understand the potential impacts of different CV penetration rates on highway operation performance.

Originality/value

This approach assumes that there shall exist a critical CV penetration rate that can maximize the benefits of CV implementations. CV penetration rate (the proportion of CVs in mixed traffic) is the key factor affecting the impacts of CV on freeway operational performance. The evaluation criteria for freeway operational performance are using average travel time under different given traffic demand patterns.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 13 November 2018

Ryuichi Umeno, Makoto Itoh and Satoshi Kitazaki

Level 3 automated driving, which has been defined by the Society of Automotive Engineers, may cause driver drowsiness or lack of situation awareness, which can make it difficult…

1313

Abstract

Purpose

Level 3 automated driving, which has been defined by the Society of Automotive Engineers, may cause driver drowsiness or lack of situation awareness, which can make it difficult for the driver to recognize where he/she is. Therefore, the purpose of this study was to conduct an experimental study with a driving simulator to investigate whether automated driving affects the driver’s own localization compared to manual driving.

Design/methodology/approach

Seventeen drivers were divided into the automated operation group and manual operation group. Drivers in each group were instructed to travel along the expressway and proceed to the specified destinations. The automated operation group was forced to select a course after receiving a Request to Intervene (RtI) from an automated driving system.

Findings

A driver who used the automated operation system tended to not take over the driving operation correctly when a lane change is immediately required after the RtI.

Originality/value

This is a fundamental research that examined how the automated driving operation affects the driver's own localization. The experimental results suggest that it is not enough to simply issue an RtI, and it is necessary to tell the driver what kind of circumstances he/she is in and what they should do next through the HMI. This conclusion can be taken into consideration for engineers who design automatic driving vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 96