Search results

1 – 10 of 13
Article
Publication date: 21 January 2022

Mustafa S. Al-Khazraji, M. J. Jweeg and S. H. Bakhy

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation…

Abstract

Purpose

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation theory (HSDT) was simplified for the dynamic analysis of LHSP. Furthermore, the effects of honeycomb parameters on the value of natural frequency (NF) of vibration were explored.

Design/methodology/approach

This paper applies HSDT to the analysis of composite LHSP to derive four vibration differential equations of motion and solve it to find the NF of vibration. Two analytical models (Nayak and Meunier models) were selected from literature for comparison of the NF of vibration. In addition, a numerical model was built by using ABAQUS and the results were compared. Furthermore, parametric studies were conducted to explore the effect of honeycomb parameters on the value of the NF of vibration.

Findings

The present model is successful in simplifying HSDT for the analysis of LHSP. The first five natural frequencies of vibration were calculated analytically and numerically. In the parametric study, increasing core height or young’s modulus or changing laminate layup will increase the value of NF of vibration. Furthermore, increasing plate constraint (using clamped edge boundary condition) will increase the value of NF of vibrations.

Research limitations/implications

The current analysis is suitable for all-composite symmetric LHSP. However, for isotropic or non-symmetric materials, minor modifications might be adopted.

Originality/value

The application of simplified HSDT to the analysis of LHSP is one of the important values of this research. The other is the successful and complete dynamic analysis of all-composite LHSP.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 14 November 2023

Flavian Emmanuel Sapnken, Mohammed Hamaidi, Mohammad M. Hamed, Abdelhamid Issa Hassane and Jean Gaston Tamba

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic…

44

Abstract

Purpose

For some years now, Cameroon has seen a significant increase in its electricity demand, and this need is bound to grow within the next few years owing to the current economic growth and the ambitious projects underway. Therefore, one of the state's priorities is the mastery of electricity demand. In order to get there, it would be helpful to have reliable forecasting tools. This study proposes a novel version of the discrete grey multivariate convolution model (ODGMC(1,N)).

Design/methodology/approach

Specifically, a linear corrective term is added to its structure, parameterisation is done in a way that is consistent to the modelling procedure and the cumulated forecasting function of ODGMC(1,N) is obtained through an iterative technique.

Findings

Results show that ODGMC(1,N) is more stable and can extract the relationships between the system's input variables. To demonstrate and validate the superiority of ODGMC(1,N), a practical example drawn from the projection of electricity demand in Cameroon till 2030 is used. The findings reveal that the proposed model has a higher prediction precision, with 1.74% mean absolute percentage error and 132.16 root mean square error.

Originality/value

These interesting results are due to (1) the stability of ODGMC(1,N) resulting from a good adequacy between parameters estimation and their implementation, (2) the addition of a term that takes into account the linear impact of time t on the model's performance and (3) the removal of irrelevant information from input data by wavelet transform filtration. Thus, the suggested ODGMC is a robust predictive and monitoring tool for tracking the evolution of electricity needs.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 11 April 2024

Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Amjid Ali and Imran Khan

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation…

Abstract

Purpose

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation. Through our methods, we aim to provide accurate solutions and gain a deeper understanding of the intricate behaviors exhibited by these systems.

Design/methodology/approach

In this study, we use a dual technique that combines the Aboodh residual power series method and the Aboodh transform iteration method, both of which are combined with the Caputo operator.

Findings

We develop exact and efficient solutions by merging these unique methodologies. Our results, presented through illustrative figures and data, demonstrate the efficacy and versatility of the Aboodh methods in tackling such complex mathematical models.

Originality/value

Owing to their fractional derivatives and nonlinear behavior, these equations are crucial in modeling complex processes and confront analytical complications in various scientific and engineering contexts.

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 January 2023

Jia Jia Chang, Zhi Jun Hu and Changxiu Liu

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding…

Abstract

Purpose

In this study, a dynamic contracting model is developed between a venture capitalist (VC) and an entrepreneur (EN) to explore the influence of asymmetric beliefs regarding output-relevant parameters, agency conflicts and complementarity on the VC's posterior beliefs through the EN's unobservable effort choices to influence the optimal dynamic contract.

Design/methodology/approach

The authors construct the contracting model by incorporating the VC's effort, which is ignored in most studies. Using backward induction and a discrete-time approximation approach, the authors solve the continuous-time contract design problem, which evolves into a nonlinear ordinary differential equation (ODE).

Findings

The optimal equity share that the VC provides to the EN decreases over time. In accordance with the empirical evidence, the EN's optimistic beliefs regarding the project's profitability positively affect its equity share. However, the interactions between the optimal equity share, project risk and both partners' degrees of risk aversion are not monotonic. Moreover, the authors find that the optimal equity share increases with the degree of complementarity, which indicates that the EN is willing to cooperate with the VC. This study’s results also show that the optimal equity shares at each time are interdependent if the VC is risk-averse and independent if the VC is risk-neutral.

Research limitations/implications

In conclusion, the authors highlight two potential directions for future research. First, the authors only considered a single VC, whereas in practice, a risk project may be carried out by multiple VCs, and it is interesting to discuss how the degree of complementarity affects the number of VCs that ENs contract. Second, the authors may introduce jumps and consider more general multivariate stochastic volatility models for output dynamics and analyze the characteristics of the optimal contracts. Third, further research can deal with other forms of discretionary output functions concerning complementarity, such as Cobb–Douglas and constant elasticity of substitution (See Varian, 1992).

Social implications

The results of this study have several implications. First, it offers a novel approach to designing dynamic contracts that are specific and easy to operate. To improve the complicated venture investment situation and abate conflict between contractual parties, this study plays a good reference role. Second, the synergy effect proposed in this study provides a theoretical explanation for the executive compensation puzzle in economics, in which managers are often “rewarded for luck” (Bertrand and Mullainathan, 2001; Wu et al., 2018). This result indicates a realistic perspective on financing and establishing cooperative relationships, which enhances the efficiency of venture investment. Third, from an empirical standpoint, one can apply this framework to study research and development (R&D) problems.

Originality/value

First, the authors introduce asymmetric beliefs and Bayesian learning to study the dynamic contract design problem and discuss their effects on equity share. Second, the authors incorporate the VC's effort into the contracting problem, and analyze the synergistic effect of effort complementarity on the optimal dynamic contract.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 18 April 2024

Stefano Costa, Eugenio Costamagna and Paolo Di Barba

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other…

Abstract

Purpose

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.

Design/methodology/approach

First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.

Findings

AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.

Research limitations/implications

AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.

Originality/value

The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2024

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…

Abstract

Purpose

The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.

Design/methodology/approach

For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.

Findings

The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.

Research limitations/implications

In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.

Originality/value

Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2024

Mengyang Gao, Jun Wang and Ou Liu

Given the critical role of user-generated content (UGC) in e-commerce, exploring various aspects of UGC can aid in understanding user purchase intention and commodity…

Abstract

Purpose

Given the critical role of user-generated content (UGC) in e-commerce, exploring various aspects of UGC can aid in understanding user purchase intention and commodity recommendation. Therefore, this study investigates the impact of UGC on purchase decisions and proposes new recommendation models based on sentiment analysis, which are verified in Douban, one of the most popular UGC websites in China.

Design/methodology/approach

After verifying the relationship between various factors and product sales, this study proposes two models, collaborative filtering recommendation model based on sentiment (SCF) and hidden factors topics recommendation model based on sentiment (SHFT), by combining traditional collaborative filtering model (CF) and hidden factors topics model (HFT) with sentiment analysis.

Findings

The results indicate that sentiment significantly influences purchase intention. Furthermore, the proposed sentiment-based recommendation models outperform traditional CF and HFT in terms of mean absolute error (MAE) and root mean square error (RMSE). Moreover, the two models yield different outcomes for various product categories, providing actionable insights for organizers to implement more precise recommendation strategies.

Practical implications

The findings of this study advocate the incorporation of UGC sentimental factors into websites to heighten recommendation accuracy. Additionally, different recommendation strategies can be employed for different products types.

Originality/value

This study introduces a novel perspective to the recommendation algorithm field. It not only validates the impact of UGC sentiment on purchase intention but also evaluates the proposed models with real-world data. The study provides valuable insights for managerial decision-making aimed at enhancing recommendation systems.

Details

Industrial Management & Data Systems, vol. 124 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of 13