Search results

1 – 10 of 23
Article
Publication date: 11 April 2024

Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Amjid Ali and Imran Khan

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation…

Abstract

Purpose

The purpose of this study is to solve two unique but difficult partial differential equations: the foam drainage equation and the nonlinear time-fractional fisher’s equation. Through our methods, we aim to provide accurate solutions and gain a deeper understanding of the intricate behaviors exhibited by these systems.

Design/methodology/approach

In this study, we use a dual technique that combines the Aboodh residual power series method and the Aboodh transform iteration method, both of which are combined with the Caputo operator.

Findings

We develop exact and efficient solutions by merging these unique methodologies. Our results, presented through illustrative figures and data, demonstrate the efficacy and versatility of the Aboodh methods in tackling such complex mathematical models.

Originality/value

Owing to their fractional derivatives and nonlinear behavior, these equations are crucial in modeling complex processes and confront analytical complications in various scientific and engineering contexts.

Article
Publication date: 12 February 2024

Bahram Jalili, Milad Sadinezhad Fard, Yasir Khan, Payam Jalili and D.D. Ganji

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet…

Abstract

Purpose

The current analysis produces the fractional sample of non-Newtonian Casson and Williamson boundary layer flow considering the heat flux and the slip velocity. An extended sheet with a nonuniform thickness causes the steady boundary layer flow’s temperature and velocity fields. Our purpose in this research is to use Akbari Ganji method (AGM) to solve equations and compare the accuracy of this method with the spectral collocation method.

Design/methodology/approach

The trial polynomials that will be utilized to carry out the AGM are then used to solve the nonlinear governing system of the PDEs, which has been transformed into a nonlinear collection of linked ODEs.

Findings

The profile of temperature and dimensionless velocity for different parameters were displayed graphically. Also, the effect of two different parameters simultaneously on the temperature is displayed in three dimensions. The results demonstrate that the skin-friction coefficient rises with growing magnetic numbers, whereas the Casson and the local Williamson parameters show reverse manners.

Originality/value

Moreover, the usefulness and precision of the presented approach are pleasing, as can be seen by comparing the results with previous research. Also, the calculated solutions utilizing the provided procedure were physically sufficient and precise.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 January 2024

Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Cemil Tunç and Osman Tunç

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in…

Abstract

Purpose

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in engineering and the electrostatic potential theory, using the modified Lagrange polynomial interpolation technique combined with the biconjugate gradient stabilized method (BiCGSTAB). The framework for the existence of the unique solutions of the integral equations is provided in the context of the Banach contraction principle and Bielecki norm.

Design/methodology/approach

The authors have applied the modified Lagrange polynomial method to approximate the numerical solutions of the second kind of weakly singular Volterra and Fredholm integral equations.

Findings

Approaching the interpolation of the unknown function using the aforementioned method generates an algebraic system of equations that is solved by an appropriate classical technique. Furthermore, some theorems concerning the convergence of the method and error estimation are proved. Some numerical examples are provided which attest to the application, effectiveness and reliability of the method. Compared to the Fredholm integral equations of weakly singular type, the current technique works better for the Volterra integral equations of weakly singular type. Furthermore, illustrative examples and comparisons are provided to show the approach’s validity and practicality, which demonstrates that the present method works well in contrast to the referenced method. The computations were performed by MATLAB software.

Research limitations/implications

The convergence of these methods is dependent on the smoothness of the solution, it is challenging to find the solution and approximate it computationally in various applications modelled by integral equations of non-smooth kernels. Traditional analytical techniques, such as projection methods, do not work well in these cases since the produced linear system is unconditioned and hard to address. Also, proving the convergence and estimating error might be difficult. They are frequently also expensive to implement.

Practical implications

There is a great need for fast, user-friendly numerical techniques for these types of equations. In addition, polynomials are the most frequently used mathematical tools because of their ease of expression, quick computation on modern computers and simple to define. As a result, they made substantial contributions for many years to the theories and analysis like approximation and numerical, respectively.

Social implications

This work presents a useful method for handling weakly singular integral equations without involving any process of change of variables to eliminate the singularity of the solution.

Originality/value

To the best of the authors’ knowledge, the authors claim the originality and effectiveness of their work, highlighting its successful application in addressing weakly singular Volterra and Fredholm integral equations for the first time. Importantly, the approach acknowledges and preserves the possible singularity of the solution, a novel aspect yet to be explored by researchers in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 7 June 2022

Manoj Kumar

In this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).

Abstract

Purpose

In this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).

Design/methodology/approach

The proposed method is a combination of Sumudu transform and a semi-analytc technique Daftardar-Gejji and Jafari method (DGJM).

Findings

The author solves various non-trivial examples using the proposed method. Moreover, the author obtained the solutions either in exact form or in a series that converges to a closed-form solution. The proposed method is a very good tool to solve this type of equations.

Originality/value

The present work is original. To the best of the author's knowledge, this work is not done by anyone in the literature.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 16 February 2024

Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz and Faisal Mehmood Butt

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering…

15

Abstract

Purpose

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.

Design/methodology/approach

Suitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.

Findings

It is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 March 2024

Yongjiang Xue, Wei Wang and Qingzeng Song

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work…

Abstract

Purpose

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work aims to introduce and validate a variational sparse diffusion model that enhances the capability to maintain the definition of sharp features within meshes throughout complex processing tasks such as segmentation and repair.

Design/methodology/approach

We developed a variational sparse diffusion model that integrates a high-order L1 regularization framework with Dirichlet boundary constraints, specifically designed to preserve edge definition. This model employs an innovative vertex updating strategy that optimizes the quality of mesh repairs. We leverage the augmented Lagrangian method to address the computational challenges inherent in this approach, enabling effective management of the trade-off between diffusion strength and feature preservation. Our methodology involves a detailed analysis of segmentation and repair processes, focusing on maintaining the acuity of features on triangulated surfaces.

Findings

Our findings indicate that the proposed variational sparse diffusion model significantly outperforms traditional smooth diffusion methods in preserving sharp features during mesh processing. The model ensures the delineation of clear boundaries in mesh segmentation and achieves high-fidelity restoration of deteriorated meshes in repair tasks. The innovative vertex updating strategy within the model contributes to enhanced mesh quality post-repair. Empirical evaluations demonstrate that our approach maintains the integrity of original, sharp features more effectively, especially in complex geometries with intricate detail.

Originality/value

The originality of this research lies in the novel application of a high-order L1 regularization framework to the field of mesh processing, a method not conventionally applied in this context. The value of our work is in providing a robust solution to the problem of feature degradation during the mesh manipulation process. Our model’s unique vertex updating strategy and the use of the augmented Lagrangian method for optimization are distinctive contributions that enhance the state-of-the-art in geometry processing. The empirical success of our model in preserving features during mesh segmentation and repair presents an advancement in computer graphics, offering practical benefits to both academic research and industry applications.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 November 2023

Weiwen Mu, Wenbai Chen, Huaidong Zhou, Naijun Liu, Haobin Shi and Jingchen Li

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and…

Abstract

Purpose

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and other factors,by incorporating intelligent algorithms into the assembly line, the assembly process can be extended to uncertain assembly scenarios.

Design/methodology/approach

This work proposes a reinforcement learning framework based on digital twins. First, the authors used Unity3D to build a simulation environment that matches the real scene and achieved data synchronization between the real environment and the simulation environment through the robot operating system. Then, the authors trained the reinforcement learning model in the simulation environment. Finally, by creating a digital twin environment, the authors transferred the skill learned from the simulation to the real environment and achieved stable algorithm deployment in real-world scenarios.

Findings

In this work, the authors have completed the transfer of skill-learning algorithms from virtual to real environments by establishing a digital twin environment. On the one hand, the experiment proves the progressiveness of the algorithm and the feasibility of the application of digital twins in reinforcement learning transfer. On the other hand, the experimental results also provide reference for the application of digital twins in 3C assembly scenarios.

Originality/value

In this work, the authors designed a new encoder structure in the simulation environment to encode image information, which improved the model’s perception of the environment. At the same time, the authors used the fixed strategy combined with the reinforcement learning strategy to learn skills, which improved the rate of convergence and stability of skills learning. Finally, the authors transferred the learned skills to the physical platform through digital twin technology and realized the safe operation of the flexible printed circuit assembly task.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 23