Search results

1 – 10 of 36
Article
Publication date: 29 January 2020

Yacheng Wang, Peibo Li, Yuegang Liu, Yize Sun and Liuyuan Su

In 3D additive screen printing with constant snap-off, the inhomogeneous screen counterforce will influence the printing force and reduce the printing quality. The purpose of this…

Abstract

Purpose

In 3D additive screen printing with constant snap-off, the inhomogeneous screen counterforce will influence the printing force and reduce the printing quality. The purpose of this paper is to study the relationship between scraper position, snap-off and screen counterforce and develop a variable snap-off curve for 3D additive screen printing to improve the printing quality.

Design/methodology/approach

An experiment was carried out; genetic algorithm (GA) optimization theoretical model, backpropagation neural network regression model and least square support vector machine regression model were established to study the relationship between scraper position, snap-off and screen counterforce. The absolute errors of counterforce of three models with the experiment results were less than 1.5 N, which was tolerated and the three models were considered valid. The comparison results showed that GA optimization theoretical model performed best.

Findings

The results suggest that GA optimization theoretical model performed best to represent the relationship, and it was used to develop a variable snap-off curve. With the variable snap-off curve in 3D additive screen printing, the inhomogeneous screen counterforce was weakened and the printing quality was improved.

Originality/value

In printing production, the variable snap-off curve in 3D additive screen printing helps improve the printing quality; this study is of prime importance to the 3D additive screen printing.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 February 2022

Chun-Sheng Chen, Hai Wang, Yung-Chin Kao, Po-Jen Lu and Wei-Ren Chen

This paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount…

Abstract

Purpose

This paper aims to establish the predictive equations of height, area and volume of printed solder paste during solder paste stencil printing (SPSP) process in surface mount technology (SMT) to better understand the effect of process parameters on the printing quality.

Design/methodology/approach

An experiment plan is proposed based on the response surface method (RSM). Experiments with 30 different combinations of process parameters are performed using a solder paste printer. After printing, the volume, area and height of the printed SAC105 solder paste are measured by a solder paste inspection machine. Using RSM, the predictive equations associated with the printing parameters and the printing quality of the solder paste are formed.

Findings

The optimal printing parameters are 175.08 N printing pressure, 250 mm/s printing speed, 0.1 mm snap-off height and 15.7 mm/s stencil snap-off speed if the target height of solder paste is 100 µm. As the target printing area of solder paste is 1.1 mm × 1.3 mm, the optimized values of the printing parameters are 140.29 N, 100.52 mm/s, 0.63 mm and 20.25 mm/s. When both the target printing height and area are optimized together, the optimal values for the four parameters are 86.67 N, 225.76 mm/s, 0.15 mm and 1.82 mm/s.

Originality/value

A simple RSM-based experimental method is proposed to formulate the predictive polynomial equations for height, area and volume of printed solder paste in terms of important SPSP parameters. The predictive equation model can be applied to the actual SPSP process, allowing engineers to quickly predict the best printing parameters during parameter setting to improve production efficiency and quality.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1989

D.E. Riemer

The basic parameters of screen printing are discussed, and an analytical model of the screen printing process is introduced. The ink roll in front of the squeegee is treated as a…

1321

Abstract

The basic parameters of screen printing are discussed, and an analytical model of the screen printing process is introduced. The ink roll in front of the squeegee is treated as a pump generating, close to the squeegee edge, high hydrostatic pressure which injects ink into the screen meshes. The shearing of the ink, the mechanics of screen snap‐off and the ink transfer taking place behind the squeegee are also analysed.

Details

Microelectronics International, vol. 6 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 7 June 2018

Chien-Yi Huang

This research aims to study the stencil printing process of the quad flat package (QFP) component with a pin pitch of 0.4 mm. After the optimization of the printing process, the…

Abstract

Purpose

This research aims to study the stencil printing process of the quad flat package (QFP) component with a pin pitch of 0.4 mm. After the optimization of the printing process, the desired inspection specification is determined to reduce the expected total process loss.

Design/methodology/approach

Static Taguchi parametric design is applied while considering the noise factors possibly affecting the printing quality in the production environment. The Taguchi quality loss function model is then proposed to evaluate the two types of inspection strategies.

Findings

The optimal parameter-level treatment for the solder paste printing process includes a squeegee pressure of 11 kg, a stencil snap-off of 0.14 mm, a cleaning frequency of the stencil once per printing and using an air gun after stencil wiping. The optimal upper and lower specification limits are 119.8 µm and 110.3 µm, respectively.

Originality/value

Noise factors in the production environment are considered to determine the optimal printing process. For specific components, the specification is established as a basis for subsequent processes or reworks.

Details

Soldering & Surface Mount Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1986

C.I. Wall

Screenprinting has formed an integral part of the manufacturing process for PCBs since the first boards were produced. This paper describes the types of product used, the areas of…

Abstract

Screenprinting has formed an integral part of the manufacturing process for PCBs since the first boards were produced. This paper describes the types of product used, the areas of application, and suggests methods for obtaining the best results by exploring printing parameters and indicating methods of optimising them to minimise faults.

Details

Circuit World, vol. 12 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 January 1993

A. Dziedzic, J. Nijs and J. Szlufcik

Different techniques applied for the fabrication of thick‐film fine lines have been analysed. The basics, achievements, advantages and disadvantages of improved screen printing…

Abstract

Different techniques applied for the fabrication of thick‐film fine lines have been analysed. The basics, achievements, advantages and disadvantages of improved screen printing, screen printing with metal masks, the direct writing method, offset printing and photoformed or photoetched thick‐film are presented. In addition, current trends in front metallisation of silicon solar cells are described. Based on a critical review, the use of thick‐film fine lines for this purpose is discussed.

Details

Microelectronics International, vol. 10 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 January 1993

E.K. Lo, N.N. Ekere, S.H. Mannan and I. Ismail

The use of fine‐pitch SMD devices has increased the need for accurate and consistent solder paste deposits for reflow soldering. Continued miniaturisation in PCB and SMD lead…

Abstract

The use of fine‐pitch SMD devices has increased the need for accurate and consistent solder paste deposits for reflow soldering. Continued miniaturisation in PCB and SMD lead sizes is presenting the user, paste supplier and print equipment manufacturer with paste printing challenges. Most of these challenges are user‐driven, and are generally met by enhancing associated print equipment and solder paste materials. Recent developments in fine‐particle pastes, water‐soluble and no‐clean pastes are among the improvements in materials. Vision‐assisted stencil aperture and PCB pad alignment, the use of metal squeegees and new stencil fabrication methods are among the latest developments on the equipment side. Printing tests have shown that there is a physical limit for the solder paste printing process, which is defined partly by the nature of the stencil fabrication process, the physical forces and the stencil's ability to meter a precise volume of paste. The challenge as SMD lead sizes decrease is to improve the printing process to match component lead sizes. There is a fear that we are now operating at the very limits of the solder paste printing process. To meet future component developments, there is a need to develop alternative printing processes for solder reflow.

Details

Soldering & Surface Mount Technology, vol. 5 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 28 January 2014

Kazimierz Drabczyk and Piotr Panek

The paper aims to present results of investigations carried out on the front electrode of the solar cell. The front-side electrode for solar cells based on crystalline material is…

Abstract

Purpose

The paper aims to present results of investigations carried out on the front electrode of the solar cell. The front-side electrode for solar cells based on crystalline material is obtained by the screen printing method. Screen printing has been the prevailing method of electrode deposition because of its low cost. One of the ways to improve the cell efficiency and reduce the production costs is a further refinement of the metal electrode screen printing process.

Design/methodology/approach

The researches were focused on the modification of mechanical parameters of screen printing process to ensure the best possible cross-section of the front electrode geometry. The main printing process parameters were constant, however, the print speed was variable. The obtained fine line of front contact was characterized morphologically – the dimension and geometry of the front contact cross-section – by scanning electron microscopy technique.

Findings

The thin paths of 100 μm in width were screen printed applying a new silver-paste made by Du Pont. The printing speed has significant effect on print quality in the way that the lower speed enhanced the printed results.

Research limitations/implications

For newest pastes (e.g. PV17D) influence of screen printing parameters on the front metallic electrodes geometry of solar cell is not so significant. Presented screen printing process can still give good results, but the further optimization for the new paste must be performed to achieve better cross-section geometry.

Originality/value

This paper confirms that one-step screen printing process can still give good results. The screen printed thin paths of 100 μm in width have good cross-section aspect ratio.

Details

Circuit World, vol. 40 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 August 1965

PROGRAMME Evaluation and Review Technique, familiarly known as PERT, is a vital subject which is growing rapidly. Recognition of this drew an interested audience to a symposium at…

Abstract

PROGRAMME Evaluation and Review Technique, familiarly known as PERT, is a vital subject which is growing rapidly. Recognition of this drew an interested audience to a symposium at Keele University on July 13, when 14 companies contributed papers on different aspects of critical path‐planning techniques and their experience as users in such disparate fields as shipbuilding, aviation, nuclear and civil engineering, the chemical and electrical industries, and management consultancy.

Details

Work Study, vol. 14 no. 8
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 1 February 1992

T.A. Molamphy, M.I. Stephenson and E.A. Murphy

Experimental design has proved to be a useful statistical tool in reducing process variation. The technique has been applied to a wide range of processes, including electronics…

Abstract

Experimental design has proved to be a useful statistical tool in reducing process variation. The technique has been applied to a wide range of processes, including electronics assembly and soldering processes. For effective SMT assembly the screen printing of solder paste requires tight process control, especially as pad geometries become ever smaller. However, printing of solder paste is a rather complex process which is affected by machine, material, environmental and human factors, which make it difficult to characterise effectively. This paper examines the practical application of experimental design to solder paste printing for SMT and also the results from a number of experiments carried out on a semi‐automatic ‘clamshell’ type screen printer. The experimentation concentrates on the important printer and squeegee parameters and their effect on paste deposition, with measured solder paste height and ‘measle’ diagrams used as process outputs. The usefulness of the experimental results in determining the best printer settings, as well as the problems encountered during the experimentation, are highlighted.

Details

Soldering & Surface Mount Technology, vol. 4 no. 2
Type: Research Article
ISSN: 0954-0911

1 – 10 of 36