Search results

1 – 10 of over 4000
Article
Publication date: 17 January 2020

Parviz Fattahi, Naeeme Bagheri Rad, Fatemeh Daneshamooz and Samad Ahmadi

The purpose of this paper is to present a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations. In this problem, each…

Abstract

Purpose

The purpose of this paper is to present a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations. In this problem, each product is produced by assembling a set of several different parts. At first, the parts are processed in a flexible job shop system, and then at the second stage, the parts are assembled and products are produced.

Design/methodology/approach

As the problem is non-deterministic polynomial-time-hard, a new hybrid particle swarm optimization and parallel variable neighborhood search (HPSOPVNS) algorithm is proposed. In this hybrid algorithm, particle swarm optimization (PSO) algorithm is used for global exploration of search space and parallel variable neighborhood search (PVNS) algorithm for local search at vicinity of solutions obtained in each iteration. For parameter tuning of the metaheuristic algorithms, Taguchi approach is used. Also, a statistical test is proposed to compare the ability of metaheuristics at finding the best solution in the medium and large sizes.

Findings

Numerical experiments are used to evaluate and validate the performance and effectiveness of HPSOPVNS algorithm with hybrid particle swarm optimization with a variable neighborhood search (HPSOVNS) algorithm, PSO algorithm and hybrid genetic algorithm and Tabu search (HGATS). The computational results show that the HPSOPVNS algorithm achieves better performance than competing algorithms.

Practical implications

Scheduling of manufacturing parts and planning of assembly operations are two steps in production systems that have been studied independently. However, with regard to many manufacturing industries having assembly lines after manufacturing stage, it is necessary to deal with a combination of these problems that is considered in this paper.

Originality/value

This paper proposed a mathematical model and a new hybrid algorithm for flexible job shop scheduling problem with assembly operations.

Article
Publication date: 16 November 2018

Yasmine Lahsinat, Dalila Boughaci and Belaid Benhamou

This paper aims to describe two enhancements of the variable neighbourhood search (VNS) algorithm to solve efficiently the minimum interference frequency assignment problem…

Abstract

Purpose

This paper aims to describe two enhancements of the variable neighbourhood search (VNS) algorithm to solve efficiently the minimum interference frequency assignment problem (MI-FAP) which is a major issue in the radio networks, as well as a well-known NP-hard combinatorial optimisation problem. The challenge is to assign a frequency to each transceiver of the network with limited or no interferences at all. Indeed, considering that the number of radio networks users is ever increasing and that the radio spectrum is a scarce and expensive resource, the latter should be carefully managed to avoid any interference.

Design/methodology/approach

The authors suggest two new enhanced VNS variants for MI-FAP, namely, the iterated VNS (It-VNS) and the breakout VNS (BVNS). These two algorithms were designed based on the hybridising and the collaboration approaches that have emerged as two powerful means to solve hard combinatorial optimisation problems. Therefore, these two methods draw their strength from other meta-heuristics. In addition, the authors introduced a new mechanism of perturbation to enhance the performance of VNS. An extensive experiment was conducted to evaluate the performance of the proposed methods on some well-known MI-FAP datasets. Moreover, they carried out a comparative study with other metaheuristics and achieved the Friedman’s non-parametric statistical test to check the actual effect of the proposed enhancements.

Findings

The experiments showed that the two enhanced methods (It-VNS) and (BVNS) achieved better results than the VNS method. The comparative study with other meta-heuristics showed that the results are competitive and very encouraging. The Friedman’s non-parametric statistical test reveals clearly that the results of the three methods (It-VNS, BVNS and VNS) are significantly different. The authors therefore carried out the Nemenyi’s post hoc test which allowed us to identify those differences. The impact of the operated change on both the It-VNS and BVNS was thus confirmed. The proposed BVNS is competitive and able to produce good results as compared with both It-VNS and VNS for MI-FAP.

Research limitations/implications

Approached methods and particularly newly designed ones may have some drawbacks that weaken the results, in particular when dealing with extensive data. These limitations should therefore be eliminated through an appropriate approach with a view to design appropriate methods in the case of large-scale data.

Practical implications

The authors designed and implemented two new variants of the VNS algorithm before carrying out an exhaustive experimental study. The findings highlighted the potential opportunities of these two enhanced methods which could be adapted and applied to other combinatorial optimisation problems, real world applications or academic problems.

Originality/value

This paper aims at enhancing the VNS algorithm through two new approaches, namely, the It-VNS and the BVNS. These two methods were applied to the MI-FAP which is a crucial problem arising in a radio network. The numerical results are interesting and demonstrate the benefits of the proposed approaches in particular BVNS for MI-FAP.

Details

Journal of Systems and Information Technology, vol. 20 no. 4
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 9 June 2023

Binghai Zhou and Yufan Huang

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic…

Abstract

Purpose

The purpose of this paper is to cut down energy consumption and eliminate production waste on mixed-model assembly lines. Therefore, a supermarket integrated dynamic cyclic kitting system with the application of electric vehicles (EVs) is introduced. The system resorts to just-in-time (JIT) and segmented sub-line assignment strategies, with the objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

Hybrid opposition-based learning and variable neighborhood search (HOVMQPSO), a multi-objective meta-heuristics algorithm based on quantum particle swarm optimization is proposed, which hybridizes opposition-based learning methodology as well as a variable neighborhood search mechanism. Such algorithm extends the search space and is capable of obtaining more high-quality solutions.

Findings

Computational experiments demonstrated the outstanding performance of HOVQMPSO in solving the proposed part-feeding problem over the two benchmark algorithms non-dominated sorting genetic algorithm-II and quantum-behaved multi-objective particle swarm optimization. Additionally, using modified real-life assembly data, case studies are carried out, which imply HOVQMPSO of having good stability and great competitiveness in scheduling problems.

Research limitations/implications

The feeding problem is based on static settings in a stable manufacturing system with determined material requirements, without considering the occurrence of uncertain incidents. Current study contributes to assembly line feeding with EV assignment and could be modified to allow cooperation between EVs.

Originality/value

The dynamic cyclic kitting problem with sub-line assignment applying EVs and supermarkets is solved by an innovative HOVMQPSO, providing both novel part-feeding strategy and effective intelligent algorithm for industrial engineering.

Article
Publication date: 21 July 2020

Xu Dongyang, Li Kunpeng, Yang Jiehui and Cui Ligang

This paper aims to explore the commodity transshipment planning among customers, which is commonly observed in production/sales enterprises to save the operational costs.

Abstract

Purpose

This paper aims to explore the commodity transshipment planning among customers, which is commonly observed in production/sales enterprises to save the operational costs.

Design/methodology/approach

A mixed integer programming (MIP) model is built and five types of valid inequalities for tightening the solution space are derived. An improved variable neighborhood search (IVNS) algorithm is presented combining the developed multistart initial solution strategy and modified neighborhood local search procedure.

Findings

Experimental results demonstrate that: with less decision variables considered, the proposed model can solve more instances compared to the existing model in previous literature. The valid inequalities utilized to tighten the searching space can efficiently help the model to obtain optimal solutions or high-quality lower bounds. The improved algorithm is efficient to obtain optimal or near-optimal solutions and superior to the compared algorithm in terms of solution quality, computational time and robustness.

ractical implications

This research not only can help reduce operational costs and improve logistics efficiency for relevant enterprises, but also can provide guidance for constructing the decision support system of logistics intelligent scheduling platform to cater for centralized management and control.

Originality/value

This paper develops a more compact model and some stronger valid inequalities. Moreover, the proposed algorithm is easy to implement and performs well.

Details

Industrial Management & Data Systems, vol. 120 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 12 March 2018

Laila Kechmane, Benayad Nsiri and Azeddine Baalal

The purpose of this paper is to solve the capacitated location routing problem (CLRP), which is an NP-hard problem that involves making strategic decisions as well as tactical and…

Abstract

Purpose

The purpose of this paper is to solve the capacitated location routing problem (CLRP), which is an NP-hard problem that involves making strategic decisions as well as tactical and operational decisions, using a hybrid particle swarm optimization (PSO) algorithm.

Design/methodology/approach

PSO, which is a population-based metaheuristic, is combined with a variable neighborhood strategy variable neighborhood search to solve the CLRP.

Findings

The algorithm is tested on a set of instances available in the literature and gave good quality solutions, results are compared to those obtained by other metaheuristic, evolutionary and PSO algorithms.

Originality/value

Local search is a time consuming phase in hybrid PSO algorithms, a set of neighborhood structures suitable for the solution representation used in the PSO algorithm is proposed in the VNS phase, moves are applied directly to particles, a clear decoding method is adopted to evaluate a particle (solution) and there is no need to re-encode solutions in the form of particles after applying local search.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 May 2019

Mehdi Abbasi, Nahid Mokhtari, Hamid Shahvar and Amin Mahmoudi

The purpose of this paper is to solve large-scale many-to-many hub location-routing problem (MMHLRP) using variable neighborhood search (VNS). The MMHLRP is a combination of a…

Abstract

Purpose

The purpose of this paper is to solve large-scale many-to-many hub location-routing problem (MMHLRP) using variable neighborhood search (VNS). The MMHLRP is a combination of a single allocation hub location and traveling salesman problems that are known as one of the new fields in routing problems. MMHLRP is considered NP-hard since the two sub-problems are NP-hard. To date, only the Benders decomposition (BD) algorithm and the variable neighborhood particle swarm optimization (VNPSO) algorithm have been applied to solve the MMHLRP model with ten nodes and more (up to 300 nodes), respectively. In this research, the VNS method is suggested to solve large-scale MMHLRP (up to 1,000 nodes).

Design/methodology/approach

Generated MMHLRP sample tests in the previous work were considered and were added to them. In total, 35 sample tests of MMHLRP models between 10 and 1,000 nodes were applied. Three methods (BD, VNPSO and VNS algorithms) were run by a computer to solve the generated sample tests of MMHLRP. The maximum available time for solving the sample tests was 6 h. Accuracy (value of objective function solution) and speed (CPU time consumption) were considered as two major criteria for comparing the mentioned methods.

Findings

Based on the results, the VNS algorithm was more efficient than VNPSO for solving the MMHLRP sample tests with 10–440 nodes. It had many similarities with the exact BD algorithm with ten nodes. In large-scale MMHLRP (sample tests with more than 440 nodes (up to 1,000 nodes)), the previously suggested methods were disabled to solve the problem and the VNS was the only method for solving samples after 6 h.

Originality/value

The computational results indicated that the VNS algorithm has a notable efficiency in comparison to the rival algorithm (VNPSO) in order to solve large-scale MMHLRP. According to the computational results, in the situation that the problems were solved for 6 h using both VNS and VNPSO, VNS solved the problems with more accuracy and speed. Additionally, VNS can only solve large-scale MMHLRPs with more than 440 nodes (up to 1,000 nodes) during 6 h.

Article
Publication date: 2 March 2015

Can B. Kalayci, Olcay Polat and Surendra M. Gupta

The purpose of this paper is to efficiently solve disassembly line balancing problem (DLBP) and the sequence-dependent disassembly line balancing problem (SDDLBP) which are both…

Abstract

Purpose

The purpose of this paper is to efficiently solve disassembly line balancing problem (DLBP) and the sequence-dependent disassembly line balancing problem (SDDLBP) which are both known to be NP-complete.

Design/methodology/approach

This manuscript utilizes a well-proven metaheuristics solution methodology, namely, variable neighborhood search (VNS), to address the problem.

Findings

DLBPs are analyzed using the numerical instances from the literature to show the efficiency of the proposed approach. The proposed algorithm showed superior performance compared to other techniques provided in the literature in terms of robustness to reach better solutions.

Practical implications

Since disassembly is the most critical step in end-of-life product treatment, every step toward improving disassembly line balancing brings us closer to cost savings and compelling practicality.

Originality/value

This paper is the first adaptation of VNS algorithm for solving DLBP and SDDLBP.

Details

Journal of Manufacturing Technology Management, vol. 26 no. 2
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 25 January 2022

Seyed Mohammad Hassan Hosseini

This paper aims to address a distributed assembly permutation flow-shop scheduling problem (DAPFSP) considering budget constraints and factory eligibility. The first stage of the…

Abstract

Purpose

This paper aims to address a distributed assembly permutation flow-shop scheduling problem (DAPFSP) considering budget constraints and factory eligibility. The first stage of the considered production system is composed of several non-identical factories with different technology levels and so the factories' performance is different in terms of processing time and cost. The second stage is an assembly stage wherein there are some parallel work stations to assemble the ready parts into the products. The objective function is to minimize the maximum completion time of products (makespan).

Design/methodology/approach

First, the problem is formulated as mixed-integer linear programing (MIP) model. In view of the nondeterministic polynomial (NP)-hard nature, three approximate algorithms are adopted based on variable neighborhood search (VNS) and the Johnsons' rule to solve the problem on the practical scales. The proposed algorithms are applied to solve some test instances in different sizes.

Findings

Comparison result to mathematical model validates the performance accuracy and efficiency of three proposed methods. In addition, the result demonstrated that the proposed two-level self-adaptive variable neighborhood search (TLSAVNS) algorithm outperforms the other two proposed methods. Moreover, the proposed model highlighted the effects of budget constraints and factory eligibility on the makespan. Supplementary analysis was presented by adjusting different amounts of the budget for controlling the makespan and total expected costs. The proposed solution approach can provide proper alternatives for managers to make a trade-off in different various situations.

Originality/value

The problem of distributed assembly permutation flow-shop scheduling is traditionally studied considering identical factories. However, processing factories as an important element in the supply chain use different technology levels in the real world. The current paper is the first study that investigates that problem under non-identical factories condition. In addition, the impact of different technology levels is investigated in terms of operational costs, quality levels and processing times.

Details

Kybernetes, vol. 52 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 January 2020

Hong Ma, Ni Shen, Jing Zhu and Mingrong Deng

Motivated by a problem in the context of DiDi Travel, the biggest taxi hailing platform in China, the purpose of this paper is to propose a novel facility location problem…

Abstract

Purpose

Motivated by a problem in the context of DiDi Travel, the biggest taxi hailing platform in China, the purpose of this paper is to propose a novel facility location problem, specifically, the single source capacitated facility location problem with regional demand and time constraints, to help improve overall transportation efficiency and cost.

Design/methodology/approach

This study develops a mathematical programming model, considering regional demand and time constraints. A novel two-stage neighborhood search heuristic algorithm is proposed and applied to solve instances based on data sets published by DiDi Travel.

Findings

The results of this study show that the model is adequate since new characteristics of demand can be deduced from large vehicle trajectory data sets. The proposed algorithm is effective and efficient on small and medium as well as large instances. The research also solves and presents a real instance in the urban area of Chengdu, China, with up to 30 facilities and demand deduced from 16m taxi trajectory data records covering around 16,000 drivers.

Research limitations/implications

This study examines an offline and single-period case of the problem. It does not consider multi-period or online cases with uncertainties, where decision makers need to dynamically remove out-of-service stations and add other stations to the selected group.

Originality/value

Prior studies have been quite limited. They have not yet considered demand in the form of vehicle trajectory data in facility location problems. This study takes into account new characteristics of demand, regional and time constrained, and proposes a new variant and its solution approach.

Details

Industrial Management & Data Systems, vol. 120 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 24 February 2012

Marisa da Silva Maximiano, Miguel A. Vega‐Rodríguez, Juan A. Gómez‐Pulido and Juan M. Sánchez‐Pérez

The purpose of this paper is to address a multiobjective FAP (frequency assignment problem) formulation. More precisely, two conflicting objectives – the interference cost and the…

Abstract

Purpose

The purpose of this paper is to address a multiobjective FAP (frequency assignment problem) formulation. More precisely, two conflicting objectives – the interference cost and the separation cost – are considered to characterize FAP as an MO (multiobjective optimization) problem.

Design/methodology/approach

The contribution to this specific telecommunication problem in a real scenario follows a recent approach, for which the authors have already accomplished some preliminary results. In this paper, a much more complete analysis is performed, including two well‐known algorithms (such as the NSGA‐II and SPEA2), with new results, new comparisons and statistical studies. More concretely, in this paper five different algorithms are presented and compared. The popular multiobjective algorithms, NSGA‐II and SPEA2, are compared against the Differential Evolution with Pareto Tournaments (DEPT) algorithm, the Greedy Multiobjective Variable Neighborhood Search (GMO‐VNS) algorithm and its variant Greedy Multiobjective Skewed Variable Neighborhood Search (GMO‐SVNS). Furthermore, the authors also contribute with a new design of multiobjective metaheuristic named Multiobjective Artificial Bee Colony (MO‐ABC) that is included in the comparison; it represents a new metaheuristic that the authors have developed to address FAP. The results were analyzed using two complementary indicators: the hypervolume indicator and the coverage relation. Two large‐scale real‐world mobile networks were used to validate the performance comparison made among several multiobjective metaheuristics.

Findings

The final results show that the multiobjective proposal is very competitive, clearly surpassing the results obtained by the well‐known multiobjective algorithms (NSGA‐II and SPEA2).

Originality/value

The paper provides a comparison among several multiobjective metaheuristics to solve FAP as a real‐life telecommunication engineering problem. A new multiobjective metaheuristic is also presented. Preliminary results were enhanced with two well‐known multiobjective algorithms. To the authors' knowledge, they have never been investigated for FAP.

1 – 10 of over 4000