Search results

1 – 10 of 96
Article
Publication date: 26 March 2024

Richard John Boulton, Lia Louise Boulton and Michael John Boulton

High levels of interior water vapour lead to condensation and black mould that in turn represent significant risks to residential properties and their occupants. Beliefs about…

Abstract

Purpose

High levels of interior water vapour lead to condensation and black mould that in turn represent significant risks to residential properties and their occupants. Beliefs about window opening are good predictors of the degree to which householders will actually open windows to purge their homes of water vapour, including water vapour that they themselves generate. The present study tested if a short information-giving intervention could enhance householders’ beliefs that foster window opening as purge ventilation and, in turn, lead to greater window opening.

Design/methodology/approach

Data were collected from 242 UK householders with robust psychometrically sound measures embedded in an online self-report survey that also presented the intervention information.

Findings

The intervention led participants, and males in particular, to have significantly greater concerns about condensation and mould and significantly less concerns about heat loss costs arising from opening windows, and these altered beliefs in turn predicted a greater intention to open windows in the future.

Practical implications

By sharing simple information, surveyors and other building professionals can help householders take the simple step of opening their windows and so reduce the threats that condensation and mould present to themselves and their homes.

Originality/value

This is the first study to test (1) a time-based model that predicted the intervention would have a positive effect on specific window opening attitudes and that those new attitudes would in turn affect window opening intentions, and (2) if the intervention had different effects on men and women.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 December 2023

Abdelhamid Ads, Santosh Murlidhar Pingale and Deepak Khare

This study’s fundamental objective is to assess climate change impact on reference evapotranspiration (ETo) patterns in Egypt under the latest shared socioeconomic pathways (SSPs…

Abstract

Purpose

This study’s fundamental objective is to assess climate change impact on reference evapotranspiration (ETo) patterns in Egypt under the latest shared socioeconomic pathways (SSPs) of climate change scenarios. Additionally, the study considered the change in the future solar radiation and actual vapor pressure and predicted them from historical data, as these factors significantly impact changes in the ETo.

Design/methodology/approach

The study utilizes data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) models to analyze reference ETo. Six models are used, and an ArcGIS tool is created to calculate the monthly average ETo for historical and future periods. The tool considers changes in actual vapor pressure and solar radiation, which are the primary factors influencing ETo.

Findings

The research reveals that monthly reference ETo in Egypt follows a distinct pattern, with the highest values concentrated in the southern region during summer and the lowest values in the northern part during winter. This disparity is primarily driven by mean air temperature, which is significantly higher in the southern areas. Looking ahead to the near future (2020–2040), the data shows that Aswan, in the south, continues to have the highest annual ETo, while Kafr ash Shaykh, in the north, maintains the lowest. This pattern remains consistent in the subsequent period (2040–2060). Additionally, the study identifies variations in ETo , with the most significant variability occurring in Shamal Sina under the SSP585 scenario and the least variability in Aswan under the SSP370 scenario for the 2020–2040 time frame.

Originality/value

This study’s originality lies in its focused analysis of climate change effects on ETo, incorporating crucial factors like actual vapor pressure and solar radiation. Its significance becomes evident as it projects ETo patterns into the near and distant future, providing indispensable insights for long-term planning and tailored adaptation strategies. As a result, this research serves as a valuable resource for policymakers and researchers in need of in-depth, region-specific climate change impact assessments.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 April 2024

Garima Nema and Karunamurthy K.

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative…

Abstract

Purpose

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative combined condenser unit over traditional individual condenser unit water heating systems.

Design/methodology/approach

The presented innovative new unit of the combined condenser heat pipe works efficiently through its improved idea and unique design, providing uniform heating to improve the heat transfer and, finally, the temperature of water increases without enhancing the cost. In this design, all these five evaporator units were connected with a single combined condenser unit in such a manner that after the condensation of heat transfer fluid vapour, it goes equally into the evaporator pipe.

Findings

The maximum temperature of hot water obtained from the combined condenser heating system was 60.6, 55.5 and 50.3°C at a water flow rate of 0.001, 0.002 and 0.003 kg/s, respectively. The first and second law thermodynamic efficiency of the combined condenser heating system were 55.4%, 60.5% and 89.0% and 2.6%, 3.7% and 4.1% at 0.001, 0.002 and 0.003 kg/s of water flow rates, respectively. The combined condenser heat pipe solar evacuated tube heating system promoting progressive performance is considered efficient and environment-friendly compared to the traditional condenser unit water heating system.

Originality/value

Innovative combined condenser heat pipe evacuated tube collector assembly was designed and developed for the study. A comparative theoretical and experimental energy-exergy performance analysis was performed of innovated collective condenser and traditional individual condenser heat pipe water heating system at various mass flow rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2023

Amirul Syafiq, Lilik Jamilatul Awalin, Syukri Ali and Mohd Arif

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create…

Abstract

Purpose

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create the reflection and absorption property.

Design/methodology/approach

TiO2 nanoparticles are used as fillers, and PPG has been blended at the proper ratio of 1PPG: 0.2TiO2. The prepared resin has been applied onto the glass substrate at different numbers of glass immersions during the dip-coating fabrication process. One-time glass immersion is labeled as T1 coating, two-time glass immersion is labeled as T2 coating and three-time glass immersion is labeled as T3 coating. All the prepared coating systems were left dry at ambient temperature.

Findings

T3 coating showed the lowest reading of WCA value at 40.50°, due to higher surface energy at 61.73 mN/m. The T3 coating also shows the greatest absorbance property among the prepared coating systems among the prepared coating. In terms of reflectance property, the T2 coating system has great reflectance in UV region and near-infrared region, which is 16.47% and 2.77 and 2.73%, respectively. The T2 coating also has great optical transmission about 75.00% at the visible region.

Research limitations/implications

The development of thermal insulation coating by studying the relationship between convection heat and reflectance at different wavelengths of incident light.

Practical implications

The developed coating shows high potential for glass window application.

Originality/value

The application of the hydrophilic coating on light absorption, reflectance and transmission at different wavelengths.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 May 2023

Alolote I. Amadi

Using Nigeria, as a point of reference, this study aims to explore the applicability of climatic variables as analytically valid factors for conceptual cost estimation. This is in…

Abstract

Purpose

Using Nigeria, as a point of reference, this study aims to explore the applicability of climatic variables as analytically valid factors for conceptual cost estimation. This is in view of the vastness and topographical alignment of Nigeria's landmass, which makes it a country of extreme climatic variability from north to south. As construction costs in Nigeria, similarly, tend to show a north-south alignment, the study's objective is to establish cost-estimating relationships (CERs) between the variability of climatic elements and the variance in construction cost, to arouse interest in the concept.

Design/methodology/approach

Deploying correlation analysis and multiple regression analysis, significant associations/relationships between meteorological variables and building cost for selected locations, following a North-South transect of the major climatic zones, are sought, to explain climate-induced construction cost variance. Validation of the regression model was carried out using variance analysis and the Mean Absolute Percentage Error of a different dataset.

Findings

Climatic indices of atmospheric moisture exhibited strong direct and partial correlations with construction costs, while sunshine hours and temperature were inversely correlated. The study further establishes statistically significant CERs between climatic variables and building cost in Nigeria, which accounted for 47.9% of the variance in construction cost across the climatic zones.

Practical implications

The study outcome provides a statistically valid platform for the development of more elaborate analytical costing models, for prototype buildings to be cited in disparate climatic settings.

Originality/value

This study establishes the statistical validity of climatic variables in constituting CERs for predicting construction costs in disparate climatic settings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 June 2022

Mounir Kouhila, Younes Bahammou, Hamza Lamsyehe, Zakaria Tagnamas, Haytem Moussaoui, Ali Idlimam and Abdelkader Lamharrar

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of…

Abstract

Purpose

The paper aims to evaluate drying performance of earth mortar by solar drying for more durability, minimize pathologies in traditional construction and determine the influence of temperature and humidity on the microstructure of earth mortar using static gravimetric method.

Design/methodology/approach

A convective solar dryer was used for the pretreatment of building and solid materials for construction.

Findings

The humidity influences the mortar sorption – surface water sorption of earth mortar increased with increasing temperature.

Originality/value

The study used a novel method for pretreatment building materials by using solar dryer.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 96