Search results

1 – 6 of 6
Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 December 2023

Mario Henrique Callefi, Gilberto Miller Devós Ganga, Moacir Godinho Filho, Elias Ribeiro da Silva, Lauro Osiro and Vasco Reis

Road freight transportation companies need to take advantage of information and communication technologies to develop capabilities. This study proposes a framework to guide road…

Abstract

Purpose

Road freight transportation companies need to take advantage of information and communication technologies to develop capabilities. This study proposes a framework to guide road freight transportation companies to achieve data visibility in their operations by developing such capabilities. By proposing this framework, this research contributes to literature and practice, highlighting the capabilities and the respective supporting technologies for improved data visibility in road freight transportation.

Design/methodology/approach

A mixed-method approach is used to develop the framework, considering three methodological steps. In phase 1, the capabilities are identified in the literature and validated by experts. In phase 2, an empirical assessment of cause–effect relationships between capabilities is performed using a multiple case study and DEMATEL. Lastly, in phase 3, an analysis of the cause model and significant associations is conducted to enable the development of the framework. In addition, the proposed framework was validated by the experts interviewed.

Findings

The results provide a framework that explains the link between the technology-enabled data visibility capabilities in road freight transportation operations. In addition, a pathway was established that road freight transportation companies could follow to achieve data visibility in their operations by developing such capabilities.

Originality/value

This work develops the first framework that provides a path for data visibility in road freight transportation operations from adopting certain technologies. The insights are compelling for researchers and practitioners to optimize the decision-making process for adopting technologies and developing capabilities related to data visibility.

Details

Industrial Management & Data Systems, vol. 124 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 4 May 2023

Zeping Wang, Hengte Du, Liangyan Tao and Saad Ahmed Javed

The traditional failure mode and effect analysis (FMEA) has some limitations, such as the neglect of relevant historical data, subjective use of rating numbering and the less…

Abstract

Purpose

The traditional failure mode and effect analysis (FMEA) has some limitations, such as the neglect of relevant historical data, subjective use of rating numbering and the less rationality and accuracy of the Risk Priority Number. The current study proposes a machine learning–enhanced FMEA (ML-FMEA) method based on a popular machine learning tool, Waikato environment for knowledge analysis (WEKA).

Design/methodology/approach

This work uses the collected FMEA historical data to predict the probability of component/product failure risk by machine learning based on different commonly used classifiers. To compare the correct classification rate of ML-FMEA based on different classifiers, the 10-fold cross-validation is employed. Moreover, the prediction error is estimated by repeated experiments with different random seeds under varying initialization settings. Finally, the case of the submersible pump in Bhattacharjee et al. (2020) is utilized to test the performance of the proposed method.

Findings

The results show that ML-FMEA, based on most of the commonly used classifiers, outperforms the Bhattacharjee model. For example, the ML-FMEA based on Random Committee improves the correct classification rate from 77.47 to 90.09 per cent and area under the curve of receiver operating characteristic curve (ROC) from 80.9 to 91.8 per cent, respectively.

Originality/value

The proposed method not only enables the decision-maker to use the historical failure data and predict the probability of the risk of failure but also may pave a new way for the application of machine learning techniques in FMEA.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 6 February 2023

Nofirman Firdaus, Hasnida Ab-Samat and Bambang Teguh Prasetyo

This paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept…

Abstract

Purpose

This paper reviews the literature on maintenance strategies for energy efficiency as a potential maintenance approach. The purpose of this paper is to identify the main concept and common principle for each maintenance strategy for energy efficiency.

Design/methodology/approach

A literature review has been carried out on maintenance and energy efficiency. The paper systematically classified the literature into three maintenance strategies (e.g. inspection-based maintenance [IBM], time-based maintenance [TBM] and condition-based maintenance [CBM]). The concept and principle of each maintenance strategy are identified, compared and discussed.

Findings

Each maintenance strategy's main concept and principle are identified based on the following criteria: data required and collection, data analysis/modeling and decision-making. IBM relies on human senses and common senses to detect energy faults. Any detected energy losses are quantified to energy cost. A payback period analysis is commonly used to justify corrective actions. On the other hand, CBM monitors relevant parameters that indicate energy performance indicators (EnPIs). Data analysis or deterioration modeling is needed to identify energy degradation. For the diagnostics approach, the energy degradation is compared with the threshold to justify corrective maintenance. The prognostics approach estimates when energy degradation reaches its threshold; therefore, proper maintenance tasks can be planned. On the other hand, TBM uses historical data from energy monitoring. Data analysis or deterioration modeling is required to identify degradation. Further analysis is performed to find the optimal time to perform a maintenance task. The comparison between housekeeping, IBM and CBM is also discussed and presented.

Practical implications

The literature on the classification of maintenance strategies for energy efficiency has been limited. On the other hand, the ISO 50001 energy management systems standard shows the importance of maintenance for energy efficiency (MFEE). Therefore, to bridge the gap between research and industry, the proposed concept and principle of maintenance strategies will be helpful for practitioners to apply maintenance strategies as energy conservation measures in implementing ISO 50001 standard.

Originality/value

The novelty of this paper is in-depth discussion on the concept and principle of each maintenance strategy (e.g. housekeeping or IBM, TBM and CBM) for energy efficiency. The relevant literature for each maintenance strategy was also summarized. In addition, basic rules for maintenance strategy selection are also proposed.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 27 March 2024

Temesgen Agazhie and Shalemu Sharew Hailemariam

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Abstract

Purpose

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Design/methodology/approach

We employed fuzzy techniques for order preference by similarity to the ideal solution (FTOPSIS), fuzzy analytical hierarchy process (FAHP), and failure mode effect analysis (FMEA) to determine the causes of defects. To determine the current defect cause identification procedures, time studies, checklists, and process flow charts were employed. The study focuses on the sewing department of a clothing industry in Addis Ababa, Ethiopia.

Findings

These techniques outperform conventional techniques and offer a better solution for challenging decision-making situations. Each lean waste’s FMEA criteria, such as severity, occurrence, and detectability, were examined. A pairwise comparison revealed that defect has a larger effect than other lean wastes. Defects were mostly caused by inadequate operator training. To minimize lean waste, prioritizing their causes is crucial.

Research limitations/implications

The research focuses on a case company and the result could not be generalized for the whole industry.

Practical implications

The study used quantitative approaches to quantify and prioritize the causes of lean waste in the garment industry and provides insight for industrialists to focus on the waste causes to improve their quality performance.

Originality/value

The methodology of integrating FMEA with FAHP and FTOPSIS was the new contribution to have a better solution to decision variables by considering the severity, occurrence, and detectability of the causes of wastes. The data collection approach was based on experts’ focus group discussion to rate the main causes of defects which could provide optimal values of defect cause prioritization.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 November 2022

Patrícia Maria Bozola, Thais V. Nunhes, Luís César Ferreira Motta Barbosa, Marcio C. Machado and Otavio José Oliveira

In 2016, the ISO/TS 16949 quality management standard for the automotive industry evolved to IATF 16949. The update brought new requirements that need to be analyzed before being…

Abstract

Purpose

In 2016, the ISO/TS 16949 quality management standard for the automotive industry evolved to IATF 16949. The update brought new requirements that need to be analyzed before being implemented in organizations. Therefore, the purpose of this article is to propose guidelines to assist organizations in the automotive sector in the implementation of the elements added in the update to the IATF 16949 standard.

Design/methodology/approach

To fulfill this objective, the identification and analysis of the elements added in the evolution from ISO/TS 16949 to IATF 16949 was carried out, and four case studies were conducted in Brazilian automotive companies.

Findings

The main elements added to IATF 16949 with the update of the standard are the use of process failure mode effects analysis (PFMEA) for risk analysis; the development of a communication channel for employees to report cases of misconduct and non-conformities; procedures for controlling repaired/reworked products and temporary changes; and the inclusion of autonomous maintenance for the full implementation of total productive maintenance (TPM).

Originality/value

The main practical implication/contribution of the research is the proposed guidelines, which can support managers and automotive companies that want to implement, or will go through, the IATF certification process. The article's originality lies in the combination of a theoretical framework and case study analyses to develop the guidelines.

Details

Benchmarking: An International Journal, vol. 30 no. 9
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 6 of 6