Search results

1 – 10 of over 269000

Abstract

Details

Functional Structure and Approximation in Econometrics
Type: Book
ISBN: 978-0-44450-861-4

Abstract

Details

Functional Structure and Approximation in Econometrics
Type: Book
ISBN: 978-0-44450-861-4

Book part
Publication date: 3 February 2015

Ammar Y. Alqahtani and Surendra M. Gupta

Economic incentives, government regulations, and customer perspective on environmental consciousness (EC) are driving more and more companies into product recovery business, which…

Abstract

Economic incentives, government regulations, and customer perspective on environmental consciousness (EC) are driving more and more companies into product recovery business, which forms the basis for a reverse supply chain. A reverse supply chain consists a series of activities that involves retrieving used products from consumers and remanufacturing (closed-loop) or recycling (open-loop) them to recover their leftover market value. Much work has been done in the areas of designing forward and reverse supply chains; however, not many models deal with the transshipment of products in multiperiods. Linear physical programming (LPP) is a newly developed method whose most significant advantage is that it allows a decision-maker to express his/her preferences for values of criteria for decision-making in terms of ranges of different degrees of desirability but not in traditional form of weights as in techniques such as analytic hierarchy process, which is criticized for its unbalanced scale of judgment and failure to precisely handle the inherent uncertainty and vagueness in carrying out pair-wise comparisons. In this chapter, two multiperiod models are proposed for a remanufacturing system, which is an element of a Reverse Supply Chain (RSC), and illustrated with numerical examples. The first model is solved using mixed integer linear programming (MILP), while the second model is solved using linear physical programming. The proposed models deliver the optimal transportation quantities of remanufactured products for N-periods within the reverse supply chain.

Details

Applications of Management Science
Type: Book
ISBN: 978-1-78441-211-1

Keywords

Book part
Publication date: 9 December 2009

Josep-Francesc Valls, Vicenta Sierra, Miguel Angel Bañuelos and Ignacio Ochoa

This chapter analyzes the attribute associations, supplied by experts, of top 10 destination brands in Spain. Using a sample of respondents that represents the domestic tourist…

Abstract

This chapter analyzes the attribute associations, supplied by experts, of top 10 destination brands in Spain. Using a sample of respondents that represents the domestic tourist population, the study examined how they perceive the importance of each of the attributes when selecting a holiday destination. They are rated for all the 10 brands as a whole and for each individually. Comparisons are made between each and the average of all other brands. The application of multidimensional scale method resulted in five distinct groups or competitive sets based on the similarities and disparities of tourists’ ratings of these attributes. For each, the study suggests how these sets are perceived as a whole and in comparison with each other. The chapter offers meaningful relationships between the respondents’ demographic and socioeconomic characteristics and their perceived importance of the destination brands’ attributes.

Details

Tourism Branding: Communities in Action
Type: Book
ISBN: 978-1-84950-720-2

Keywords

Article
Publication date: 18 March 2024

Wenqiang Li, Juan He and Yangyan Shi

Marketing is a hot topic, and the purpose of this study is to investigate how shareholding strategies can be applied to achieve strategic synergy between firms in vertical supply…

Abstract

Purpose

Marketing is a hot topic, and the purpose of this study is to investigate how shareholding strategies can be applied to achieve strategic synergy between firms in vertical supply chains to improve retailers’ marketing efforts from a long-term perspective.

Design/methodology/approach

This study constructs Stackelberg models to analyze the operating mechanisms of shareholding supply chains under forward, backward and cross-shareholding strategies. The authors analyze the effects of shareholding on prices, marketing efforts and profits, and explore the strategic preferences and outcomes of different supply chain members.

Findings

Forward/backward shareholding plays the same role as cross/nonshareholding in supply chains because the effect of the retailer’s shareholding is offset by the power status of the manufacturer, and the retailer can still profit when wholesale prices are higher than selling prices in certain cases. A manufacturer’s shareholding in a retailer can benefit consumers and improve marketing efforts by reducing retailers’ marketing costs, while a retailer’s shareholding in a manufacturer has no such effect. None of all shareholding strategies can coordinate the interests of all members; however, an effective rebate policy can resolve this problem.

Originality/value

The results reveal the operational mechanism of shareholding supply chains and provide reference values for managers who want to improve marketing efforts and economic performance using a shareholding strategy.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

10

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 March 2024

Yongjiang Xue, Wei Wang and Qingzeng Song

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work…

Abstract

Purpose

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work aims to introduce and validate a variational sparse diffusion model that enhances the capability to maintain the definition of sharp features within meshes throughout complex processing tasks such as segmentation and repair.

Design/methodology/approach

We developed a variational sparse diffusion model that integrates a high-order L1 regularization framework with Dirichlet boundary constraints, specifically designed to preserve edge definition. This model employs an innovative vertex updating strategy that optimizes the quality of mesh repairs. We leverage the augmented Lagrangian method to address the computational challenges inherent in this approach, enabling effective management of the trade-off between diffusion strength and feature preservation. Our methodology involves a detailed analysis of segmentation and repair processes, focusing on maintaining the acuity of features on triangulated surfaces.

Findings

Our findings indicate that the proposed variational sparse diffusion model significantly outperforms traditional smooth diffusion methods in preserving sharp features during mesh processing. The model ensures the delineation of clear boundaries in mesh segmentation and achieves high-fidelity restoration of deteriorated meshes in repair tasks. The innovative vertex updating strategy within the model contributes to enhanced mesh quality post-repair. Empirical evaluations demonstrate that our approach maintains the integrity of original, sharp features more effectively, especially in complex geometries with intricate detail.

Originality/value

The originality of this research lies in the novel application of a high-order L1 regularization framework to the field of mesh processing, a method not conventionally applied in this context. The value of our work is in providing a robust solution to the problem of feature degradation during the mesh manipulation process. Our model’s unique vertex updating strategy and the use of the augmented Lagrangian method for optimization are distinctive contributions that enhance the state-of-the-art in geometry processing. The empirical success of our model in preserving features during mesh segmentation and repair presents an advancement in computer graphics, offering practical benefits to both academic research and industry applications.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 February 2024

Yumin He, Tingyun Gu, Bowen Li, Yu Wang, Dongyuan Qiu, Yang Zhang and Peicheng Qiu

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion…

Abstract

Purpose

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion of renewable energy sources. Most of existing ESs are implemented by voltage-source inverter (VSI), which has some shortcomings. For example, the DC-link capacitor limits the service life of ES, and the battery is costly and hard to recycle. Besides, conventional VSI cannot boost the voltage, which limits the application of ES in high-voltage occasions. This study aims to propose a novel scheme of ES to solve the above problems.

Design/methodology/approach

In this work, an ES topology based on current-source inverter (CSI) without a battery is presented, and a direct current control strategy is proposed. The operating principles, voltage regulation range and parameter design of the proposed ES are discussed in detail.

Findings

The proposed ES is applicable to various voltage levels, and the harmonics are effectively suppressed, which have been validated via the experimental results in both ideal and distorted grid conditions.

Originality/value

An ES topology based on battery-less CSI is proposed for the first time, which reduces the cost and prolongs the service time of ES. A novel control strategy is proposed to realize the functions of voltage regulation and harmonic suppression.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 269000