Search results

1 – 10 of 30
Article
Publication date: 5 August 2022

Jitender Tanwar, Sanjay Kumar Sharma and Mandeep Mittal

Drones are used in several purposes including examining areas, mapping surroundings and rescue mission operations. During these tasks, they could encounter compound surroundings…

Abstract

Purpose

Drones are used in several purposes including examining areas, mapping surroundings and rescue mission operations. During these tasks, they could encounter compound surroundings having multiple obstacles, acute edges and deadlocks. The purpose of this paper is to propose an obstacle dodging technique required to move the drones autonomously and generate the obstacle's map of an unknown place dynamically.

Design/methodology/approach

Therefore, an obstacle dodging technique is essentially required to move autonomously. The automaton of drones requires complicated vision sensors and a high computing force. During this research, a methodology that uses two basic ultrasonic-oriented proximity sensors placed at the center of the drone and applies neural control using synaptic plasticity for dynamic obstacle avoidance is proposed. The two-neuron intermittent system has been established by neural control. The synaptic plasticity is used to find turning angles from different viewpoints with immediate remembrance, so it helps in decision-making for a drone. Hence, the automaton will be able to travel around and modify its angle of turning for escaping objects during the route in unknown surroundings with narrow junctions and dead ends. Furthermore, wherever an obstacle is detected during the route, the coordinate information is communicated using RESTful Web service to an android app and an obstacle map is generated according to the information sent by the drone. In this research, the drone is successfully designed and automated and an obstacle map using the V-REP simulation environment is generated.

Findings

Simulation results show that the drone effectively moves and turns around the obstacles and the experiment of using web services with the drone is also successful in generating the obstacle's map dynamically.

Originality/value

The obstacle map generated by autonomous drone is useful in many applications such as examining fields, mapping surroundings and rescue mission operations.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 October 2021

Chittaranjan Paital, Saroj Kumar, Manoj Kumar Muni, Dayal R. Parhi and Prasant Ranjan Dhal

Smooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile…

Abstract

Purpose

Smooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.

Design/methodology/approach

Therefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.

Findings

During experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.

Originality/value

After literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 March 2022

Ye Ma, Ning Xi, Yuxuan Xue, Siyu Wang, Qingyang Wang and Ye Gu

The disinfection robot developed by the authors and team focuses on achieving fast and precise disinfection under a given or specific disinfection zone. This looks to solve…

Abstract

Purpose

The disinfection robot developed by the authors and team focuses on achieving fast and precise disinfection under a given or specific disinfection zone. This looks to solve problems with traditional robots that pay less attention to the level, efficiency and zones of disinfection. To effectively support and guarantee normal running for the whole system, a digital twin system is applied to the disinfection robot. This study aims to achieve fast, precise and thorough disinfection via the developed mobile robot.

Design/methodology/approach

The designed robot is composed primarily of the following three parts: a mobile platform, a six-axis robotic arm and a ultraviolet-C (UVC) LED array. The UVC LED array is installed on the end-effector to achieve large-scale, precise manipulation. The adoption of all types of advanced sensors and the development of an intuitive and user-friendly client interface are helpful in achieving remote control, path planning, data monitoring and custom disinfection functions.

Findings

Disinfection of three different locations in the laboratory was performed; the dosage distribution of the surface as radiated by the UVC robot was detected; and feasibility of development was validated.

Originality/value

The developed disinfection robot achieved fast, precise and thorough disinfection for a given or specific disinfection zone.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 June 2019

Asita Kumar Rath, Dayal R. Parhi, Harish Chandra Das, Priyadarshi Biplab Kumar, Manoj Kumar Muni and Kitty Salony

Humanoids have become the center of attraction for many researchers dealing with robotics investigations by their ability to replace human efforts in critical interventions. As a…

Abstract

Purpose

Humanoids have become the center of attraction for many researchers dealing with robotics investigations by their ability to replace human efforts in critical interventions. As a result, navigation and path planning has emerged as one of the most promising area of research for humanoid models. In this paper, a fuzzy logic controller hybridized with genetic algorithm (GA) has been proposed for path planning of a humanoid robot to avoid obstacles present in a cluttered environment and reach the target location successfully. The paper aims to discuss these issues.

Design/methodology/approach

Here, sensor outputs for nearest obstacle distances and bearing angle of the humanoid are first fed as inputs to the fuzzy logic controller, and first turning angle (TA) is obtained as an intermediate output. In the second step, the first TA derived from the fuzzy logic controller is again supplied to the GA controller along with other inputs and second TA is obtained as the final output. The developed hybrid controller has been tested in a V-REP simulation platform, and the simulation results are verified in an experimental setup.

Findings

By implementation of the proposed hybrid controller, the humanoid has reached its defined target position successfully by avoiding the obstacles present in the arena both in simulation and experimental platforms. The results obtained from simulation and experimental platforms are compared in terms of path length and time taken with each other, and close agreements have been observed with minimal percentage of errors.

Originality/value

Humanoids are considered more efficient than their wheeled robotic forms by their ability to mimic human behavior. The current research deals with the development of a novel hybrid controller considering fuzzy logic and GA for navigational analysis of a humanoid robot. The developed control scheme has been tested in both simulation and real-time environments and proper agreements have been found between the results obtained from them. The proposed approach can also be applied to other humanoid forms and the technique can serve as a pioneer art in humanoid navigation.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 22 May 2020

Asita Kumar Rath, Dayal R. Parhi, Harish Chandra Das, Priyadarshi Biplab Kumar and Manjeet Kumar Mahto

To navigate humanoid robots in complex arenas, a significant level of intelligence is required which needs proper integration of computational intelligence with the robot's…

Abstract

Purpose

To navigate humanoid robots in complex arenas, a significant level of intelligence is required which needs proper integration of computational intelligence with the robot's controller. This paper describes the use of a combination of genetic algorithm and neural network for navigational control of a humanoid robot in given cluttered environments.

Design/methodology/approach

The experimental work involved in the current study has been done by a NAO humanoid robot in laboratory conditions and simulation work has been done by the help of V-REP software. Here, a genetic algorithm controller is first used to generate an initial turning angle for the robot and then the genetic algorithm controller is hybridized with a neural network controller to generate the final turning angle.

Findings

From the simulation and experimental results, satisfactory agreements have been observed in terms of navigational parameters with minimal error limits that justify the proper working of the proposed hybrid controller.

Originality/value

With a lack of sufficient literature on humanoid navigation, the proposed hybrid controller is supposed to act as a guiding way towards the design and development of more robust controllers in the near future.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 14 May 2019

Anish Pandey, Abhishek Kumar Kashyap, Dayal R. Parhi and B.K. Patle

This paper aims to design and implement the multiple adaptive neuro-fuzzy inference system (MANFIS) architecture-based sensor-actuator (motor) control technique for mobile robot…

Abstract

Purpose

This paper aims to design and implement the multiple adaptive neuro-fuzzy inference system (MANFIS) architecture-based sensor-actuator (motor) control technique for mobile robot navigation in different two-dimensional environments with the presence of static and moving obstacles.

Design/methodology/approach

The three infrared range sensors have been mounted on the front, left and right side of the robot, which reads the forward, left forward and right forward static and dynamic obstacles in the environment. This sensor data information is fed as inputs into the MANFIS architecture to generate appropriate speed control commands for right and left motors of the robot. In this study, we have taken one assumption for moving obstacle avoidance in different scenarios the speed of the mobile robot is at least greater than or equal to the speed of moving obstacles and goal.

Findings

Graphical simulations have designed through MATLAB and virtual robot experimentation platform (V-REP) software and experiments have been done on Arduino MEGA 2560 microcontroller-based mobile robot. Simulation and experimental studies demonstrate the effectiveness and efficiency of the proposed MANFIS architecture.

Originality/value

This paper designs and implements MANFIS architecture for mobile robot navigation between a static and moving obstacle in different simulation and experimental environments. Also, the authors have compared this developed architecture to the other navigational technique and found that our developed architecture provided better results in terms of path length in the same environment.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 October 2022

Ipsit Kumar Dhal, Saroj Kumar and Dayal R. Parhi

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Abstract

Purpose

This study aims to modify a nature-based numerical method named the invasive weed optimization (IWO) method for mobile robot path planning in various complex environments.

Design/methodology/approach

The existing IWO method is quick in converging to a feasible solution but in a complex environment; it takes more time as well as computational resources. So, in this paper, the computational part of this artificial intelligence technique is modified with the help of recently developed evolution algorithms like particle swarm optimization, genetic algorithm, etc. Some conditional logic statements were used while doing sensor-based mapping for exploring complex paths. Implementation of sensor-based exploration, mathematical IWO method and prioritizing them for better efficiency made this modified IWO method take complex dynamic decisions.

Findings

The proposed modified IWO is better for dynamic obstacle avoidance and navigating a long complex map. The deviation of results in simulation and experiments is less than 5.5%, which validates a good agreement between simulation and real-time testing platforms.

Originality/value

As per a deep literature review, it has found that the proposed approach has not been implemented on the Khepera-III robot for smooth motion planning. Here a dynamic obstacle mapping feature is implemented. A method to selectively distribute seeds instead of a random normal distribution is also implemented in this work. The modified version of IWO is coded in MATLAB and simulated through V-Rep simulation software. The integration of sensors was done through logical conditioning. The simulation results are validated using real-time experiments.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 February 2017

Gerard A.J. Pounder, Ruel L.A. Ellis and Gerardo Fernandez-Lopez

This paper aims to introduce the cognitive function synthesis (CFS) conceptual framework to artificial general intelligence. CFS posits that at the “core” of intelligence in…

Abstract

Purpose

This paper aims to introduce the cognitive function synthesis (CFS) conceptual framework to artificial general intelligence. CFS posits that at the “core” of intelligence in hybrid architectures, “interdependent” cognitive functions are synthesised through the interaction of various associative memory (AM)-based systems. This synthesis could form an interface layer between deliberative/symbolic and reactive/sub-symbolic layers in hybrid cognitive architectures.

Design/methodology/approach

A CFS conceptual framework, specifying an arrangement of AMs, was presented. The framework was executed using sparse distributed memory. Experiments were performed to investigate CFS autonomous extraction, consciousness and imagination.

Findings

Autonomous extraction was achieved using data from a Wi-Fi camera with the CFS auto-associative AM handling “Sensor Data”. However, noise reduction degraded the extracted image. An environment, simulated in V-REP 3.3.1, was used to investigate consciousness and imagination. CFS displayed consciousness by successfully tracking/anticipating the object position with over 90 per cent congruence. CFS imagination was seen by its predicting two time steps into the future.

Originality/value

Preliminary results demonstrate the plausibility of CFS claims for autonomous extraction, consciousness and imagination.

Article
Publication date: 29 March 2019

Priyadarshi Biplab Kumar, Dayal R. Parhi and Chinmaya Sahu

With enhanced use of humanoids in demanding sectors of industrial automation and smart manufacturing, navigation and path planning of humanoid forms have become the centre of…

Abstract

Purpose

With enhanced use of humanoids in demanding sectors of industrial automation and smart manufacturing, navigation and path planning of humanoid forms have become the centre of attraction for robotics practitioners. This paper aims to focus on the development and implementation of a hybrid intelligent methodology to generate an optimal path for humanoid robots using regression analysis, adaptive particle swarm optimization and adaptive ant colony optimization techniques.

Design/methodology/approach

Sensory information regarding obstacle distances are fed to the regression controller, and an interim turning angle is obtained as the initial output. Adaptive particle swarm optimization technique is used to tune the governing parameter of adaptive ant colony optimization technique. The final output is generated by using the initial output of regression controller and tuned parameter from adaptive particle swarm optimization as inputs to the adaptive ant colony optimization technique along with other regular inputs. The final turning angle calculated from the hybrid controller is subsequently used by the humanoids to negotiate with obstacles present in the environment.

Findings

As the current investigation deals with the navigational analysis of single as well as multiple humanoids, a Petri-Net model has been combined with the proposed hybrid controller to avoid inter-collision that may happen in navigation of multiple humanoids. The hybridized controller is tested in simulation and experimental platforms with comparison of navigational parameters. The results obtained from both the platforms are found to be in coherence with each other. Finally, an assessment of the current technique with other existing navigational model reveals a performance improvement.

Research limitations/implications

The proposed hybrid controller provides satisfactory results for navigational analysis of single as well as multiple humanoids. However, the developed hybrid scheme can also be attempted with use of other smart algorithms.

Practical implications

Humanoid navigation is the present talk of the town, as its use is widespread to multiple sectors such as industrial automation, medical assistance, manufacturing sectors and entertainment. It can also be used in space and defence applications.

Social implications

This approach towards path planning can be very much helpful for navigating multiple forms of humanoids to assist in daily life needs of older adults and can also be a friendly tool for children.

Originality/value

Humanoid navigation has always been tricky and challenging. In the current work, a novel hybrid methodology of navigational analysis has been proposed for single and multiple humanoid robots, which is rarely reported in the existing literature. The developed navigational plan is verified through testing in simulation and experimental platforms. The results obtained from both the platforms are assessed against each other in terms of selected navigational parameters with observation of minimal error limits and close agreement. Finally, the proposed hybrid scheme is also evaluated against other existing navigational models, and significant performance improvements have been observed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 August 2016

Frederick Proctor, Stephen Balakirsky, Zeid Kootbally, Thomas Kramer, Craig Schlenoff and William Shackleford

This paper aims to describe an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and…

Abstract

Purpose

This paper aims to describe an information model, the Canonical Robot Command Language (CRCL), which provides a high-level description of robot tasks and associated control and status information.

Design/methodology/approach

A common representation of tasks was used that is understood by all of the resources required for the job: robots, tooling, sensors and people.

Findings

Using CRCL, a manufacturer can quickly develop robotic applications that meet customer demands for short turnaround, enable portability across a range of vendor equipment and maintain investments in application development through reuse.

Originality/value

Industrial robots can perform motion with sub-millimeter repeatability when programmed using the teach-and-playback method. While effective, this method requires significant up-front time, tying up the robot and a person during the teaching phase.

Details

Industrial Robot: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 30