Search results

1 – 8 of 8
Article
Publication date: 15 December 2023

Ümran Burcu Alkan, Nilgün Kızılcan and Başak Bengü

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Abstract

Purpose

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Design/methodology/approach

Three-step urea formaldehyde (UF) resin has been in situ modified with calcium lignosulfonate (LS) and/or 1,4 butanediol diglycidyl ether (GE). The structural, chemical, thermal and morphological characterizations were carried out on resin samples. These resins have been applied for particleboard pressing, and UF, UF-LS and UF-GE were evaluated as P2 classes according to EN 312.

Findings

The results show that the improved LS- or diglycidyl ether-modified UF wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 8 mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Combination of LS and GE resulted in weaker mechanical properties and fulfilled P1 class particleboards due to temperature and duration conditions. Therefore, in situ usage of LS or GE in UF resins is highly recommended for particleboard pressing. Formaldehyde content of particleboards was determined with the perforator method according to EN 12460-5 and all of the particleboards exhibited E1 class. LS was more efficient in decreasing formaldehyde content than GE.

Practical implications

This study provides the application of particleboards with low formaldehyde emission.

Social implications

The developed LS- and diglycidyl ether-modified UF resins made it possible to obtain boards with significantly low formaldehyde content compared with commercial resins.

Originality/value

The developed formaldehyde-based resin formulation made it possible to produce laboratory-scale board prototypes using LS or GE without sacrificing of press factors and panel quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 April 2023

Kaiyan Yang, Xiaowu Gong, Lanli Bai, Yun Zhang and Na Zhou

This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.

Abstract

Purpose

This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.

Design/methodology/approach

The authors directly used lignin to substitute formaldehyde to prepare lignin-based phenolic resin (LPF) with urea as formaldehyde absorbent. To improve the performance of the adhesive, the biobased glucose was introduced and the modified glucose-LPF (GLPF) was obtained.

Findings

The results showed that when the replacing amount of lignin to formaldehyde reached 15 Wt.%, the physical properties of the prepared LPF met the Chinese national standard, and the bonding strength increased by 21.9%, from 0.75 to 0.96 MPa, compared with PF. The addition of glucose boost the performance of wood adhesive, for example, the free phenol content of the obtained GLPF was significantly reduced by 79.11%, from 5.60% to 1.17%, the bonding strength (1.19 MPa) of GLPF increased by 19.3% in comparison to LPF and the curing temperature of GLPF decreased by 13.08%.

Practical implications

The low-formaldehyde and environmentally friendly GLPF has higher bonding strength and lower curing temperature, which is profitable to industrial application.

Social implications

The prepared GLPF has lower free formaldehyde and formaldehyde emission, which is cost-effective and beneficial to human health.

Originality/value

The joint work of lignin and glucose provides the wood adhesive with increased bonding strength, decreased free phenol content and reduced curing temperature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 September 2023

Xingbing Yang, Xinye Wang, Shuang Huang, Xin Liu, Xiang Huang and Ting Lei

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Abstract

Purpose

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Design/methodology/approach

This research first examined the influence of solid formaldehyde content on the hydroxymethylation phase. Subsequently, the effects of butanol content, etherification time and hydrochloric acid content on the formation of benzo-amino resin during the etherification stage were studied in detail. In addition, the reaction process was further analyzed through interval sampling withdrawing during the hydroxymethylation and etherification stages. Finally, the synthesized benzo-amino resins were used in the production of high solid content polyester and acrylic coatings and the properties of that were also evaluated.

Findings

Based on the experimental findings, the authors have successfully determined the optimal process conditions for the one-step-two-stage method in this study. The hydroxymethylation stage demonstrated the most favorable outcomes at a reaction temperature of 60°C and a pH of 8.5. Similarly, for the etherification stage, the optimal conditions were achieved at a temperature of 45°C and a pH of 4.5. Furthermore, the investigation revealed that a ratio of benzoguanamine to solid formaldehyde to n-butanol, specifically at 1:5.2:15, produced the best results. The performance of the resulting etherified benzo-amino resin was thoroughly evaluated in high solid content coatings, and it exhibited promising characteristics. Notably, there was a significant enhancement in the water resistance, solvent resistance and glossiness of canned iron printing varnish coatings.

Originality/value

Amino resin, a versatile chemical compound widely used in various industries, presents challenges in terms of sustainability and operational efficiency when synthesized using conventional methods, primarily relying on a 37% formaldehyde solution. To address these challenges, the authors propose a novel approach in this study that combines the advantages of the solid formaldehyde with a two-stage catalytic one-step synthesis process. The primary objective of this research is to minimize the environmental impact associated with amino resin synthesis, optimize resource utilization and enhance the economic feasibility for its industrial implementation. By adopting this alternative approach, the authors aim to contribute toward a more sustainable and efficient production of amino resin.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 May 2023

Saima Habib, Zulfiqar Ali Raza, Farzana Kishwar and Sharjeel Abid

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of…

Abstract

Purpose

Present study aimed to nanosilver-treat some commercially dyed denim fabric using an eco-friendly cross-linker of citric acid for possible application in the fabrication of sustainable antibacterial and nontoxic surgical gowns.

Design/methodology/approach

The conventional untreated surgical gowns are prone to bacterial attack making them unprotective and infection carriers. Thereby, nanosilver finishing of the surgical-grade dyed denim fabric was achieved via citrate cross-linking under the pad-dry-cure method. The hence treated denim fabrics were characterized for surface chemical, crystalline, textile, color and antibacterial attributes using both conventional and advanced analytical approaches.

Findings

The results expressed that the prepared denim specimens contained surface roughness at the nanoscale besides some alterations in their textile and color parameters. Both textile and comfort properties of the finished fabric remained in the acceptable range with effective antibacterial activity.

Practical implications

The silver nano-finished dyed denim expressed broad-spectrum antibacterial activity and qualified as a potential substrate in the fabrication of surgical gowns. Such sustainable application of nanosilver finishing could be perused for industrial implications.

Originality/value

This study presents citric acid as a crosslinking agent to impregnate the commercially dyed denim fabric for potential application in the fabrication of surgical gowns. The application of nanosilver on prior citrated dyed-grown fabrics could be a novel approach. This study used approximately all the reagents and auxiliaries as bio-based to ensure the nontoxicity and sustainability of the resultant fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 October 2023

Goutam Kumar Jana, Sumit Bera, Ribhu Maity, Tithi Maity, Arjun Mahato, Shibayan Roy, Hemakesh Mohapatra and Bidhan Chandra Samanta

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel…

Abstract

Purpose

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel components should not compromise the material properties. The purpose of this paper is to demonstrate the use of a synthetic amine functional toluidine acetaldehyde condensate (AFTAC) as a modifier for fiber-reinforced epoxy composites. One of the fiber components was sourced from agricultural byproducts, and glass fiber was used as the fiber component for comparison.

Design/methodology/approach

The AFTAC condensate was synthesized via an acid-catalyzed reaction between o-toluidine and acetaldehyde. To demonstrate its efficacy as a toughening agent for diglycidyl ether bisphenol A resin composites and for the comparison of reinforcing materials of interest, composites were fabricated using a natural fiber (mat stick) and a synthetic glass fiber as the reinforcing material. A matched metal die technique was used to fabricate the composites. Composites were prepared and their mechanical and thermal properties were evaluated.

Findings

The inclusion of AFTAC led to an improvement in the mechanical strengths of these composites without any significant deterioration of the thermal stability. It was also observed that the fracture strengths for mat stick fiber-reinforced composites were lower than that of glass fiber-reinforced composites.

Originality/value

To the best of the authors’ knowledge, the use of the AFTAC modifier as well as incorporation of mat stick fibers in epoxy composites has not been demonstrated previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton…

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 8 of 8