Search results

1 – 10 of 20
Open Access
Article
Publication date: 8 May 2018

Aidan Jungo, Mengmeng Zhang, Jan B. Vos and Arthur Rizzi

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods…

2192

Abstract

Purpose

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods (CEASIOM) and to compare results of different aerodynamic tools. The concurrent design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

Design/methodology/approach

CEASIOM (www.ceasiom.com) is a framework that integrates discipline-specific tools like computer-aided design, mesh generation, computational fluid dynamics (CFD), stability and control analysis and structural analysis, all for the purpose of aircraft conceptual design.

Findings

A new CEASIOM version is under development within EU Project AGILE (www.agile-project.eu), by adopting the CPACS XML data-format for representation of all design data pertaining to the aircraft under development.

Research limitations/implications

Results obtained from different methods have been compared and analyzed. Some differences have been observed; however, they are mainly due to the different physical modelizations that are used by each of these methods.

Originality/value

This paper summarizes the current status of the development of the new CEASIOM software, in particular for the following modules: CPACS file visualizer and editor CPACSupdater (Matlab) Automatic unstructured (Euler) & hybrid (RANS) mesh generation by sumo Multi-fidelity CFD solvers: Digital Datcom (Empirical), Tornado (VLM), Edge-Euler & SU2-Euler, Edge-RANS & SU2-RANS Data fusion tool: aerodynamic coefficients fusion from variable fidelity CFD tools above to compile complete aero-table for flight analysis and simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 May 2022

Wenhua Guo, Xinmin Hong and Chunxia Chen

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation…

Abstract

Purpose

This paper aims to study the influence of aerodynamics force of trains passing each other on the dynamic response of vehicle bridge coupling system based on numerical simulation and multi-body dynamics and put forward the speed threshold for safe running of train under different crosswind speeds.

Design/methodology/approach

The computational fluid dynamics method is adopted to simulate the aerodynamic force in the whole process of train passing each other by using dynamic grid technology. The dynamic model of vehicle-bridge coupling system is established considering the effects of aerodynamic force of train passing each other under crosswind, the dynamic response of train intersection on the bridge under crosswind is computed and the running safety of the train is evaluated.

Findings

The aerodynamic force of trains' intersection has little effects on the derailment factor, lateral wheel-rail force and vertical acceleration of train, but it increases the offload factor of train and significantly increases the lateral acceleration of train. The crosswind has a significant effect on increasing the derailment factor, lateral wheel-rail force and offload factor of train. The offload factor of train is the key factor to control the threshold of train speed. The impact of the aerodynamic force of trains' intersection on running safety cannot be ignored. When the extreme values of crosswind wind speed are 15 m·s−1, 20 m·s−1 and 25 m·s−1, respectively, the corresponding speed thresholds for safe running of train are 350 km·h−1, 275 km·h−1 and 200 km·h−1, respectively.

Originality/value

The research can provide a more precise numerical method to study the running safety of high-speed trains under the aerodynamic effect of trains passing each other on bridge in crosswind.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 5 October 2015

Zhiyi Yu, Baoshan Zhu and Shuliang Cao

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was…

2123

Abstract

Purpose

Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps.

Design/methodology/approach

Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces.

Findings

The results demonstrate that the TDF can be neglected in the running of the multiphase rotodynamic pump; the drag force is dominant in the impeller region and the outlet extended region. The sensitivity analyses of the bubble diameter and the rotational speed were also performed. It is found that larger bubble size is accompanied by smaller predicted drag but larger predicted lift and virtual mass, while the increase of the rotational speed can raise all the interphase forces mentioned above.

Originality/value

This paper has revealed the magnitude information and the relative importance of the interphase forces in a multiphase rotodynamic pump.

Details

Engineering Computations, vol. 32 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 19 August 2020

Ahmed Berkane and Abdallah Bradji

We consider, as discretization in space, the nonconforming mesh developed in SUSHI (Scheme Using Stabilization and Hybrid Interfaces) developed in Eymard et al. (2010) for a…

Abstract

We consider, as discretization in space, the nonconforming mesh developed in SUSHI (Scheme Using Stabilization and Hybrid Interfaces) developed in Eymard et al. (2010) for a semi-linear heat equation. The time discretization is performed using a uniform mesh. We are concerned with a nonlinear scheme that has been studied in Bradji (2016) in the context of the general framework GDM (Gradient Discretization Method) (Droniou et al., 2018) which includes SUSHI. We provide sufficient conditions on the size of the spatial mesh and the time step which allow to prove a W1,(L2)-error estimate. This error estimate can be viewed as an improvement for the W1,2(L2)-error estimate proved in Bradji (2016). The W1,(L2)-error estimate we want to prove in this note was stated without proof in Bradji (2016, Remark 7.2, Page 1302). Its proof is based on a comparison with an appropriately chosen auxiliary finite volume scheme along with the derivation of some new estimates on its solution.

Details

Arab Journal of Mathematical Sciences, vol. 27 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 6 November 2018

Matthijs Langelaar

The purpose of this paper is to communicate a method to perform simultaneous topology optimization of component and support structures considering typical metal additive…

1878

Abstract

Purpose

The purpose of this paper is to communicate a method to perform simultaneous topology optimization of component and support structures considering typical metal additive manufacturing (AM) restrictions and post-print machining requirements.

Design/methodology/approach

An integrated topology optimization is proposed using two density fields: one describing the design and another defining the support layout. Using a simplified AM process model, critical overhang angle restrictions are imposed on the design. Through additional load cases and constraints, sufficient stiffness against subtractive machining loads is enforced. In addition, a way to handle non-design regions in an AM setting is introduced.

Findings

The proposed approach is found to be effective in producing printable optimized geometries with adequate stiffness against machining loads. It is shown that post-machining requirements can affect optimal support structure layout.

Research limitations/implications

This study uses a simplified AM process model based on geometrical characteristics. A challenge remains to integrate more detailed physical AM process models to have direct control of stress, distortion and overheating.

Practical implications

The presented method can accelerate and enhance the design of high performance parts for AM. The consideration of post-print aspects is expected to reduce the need for design adjustments after optimization.

Originality/value

The developed method is the first to combine AM printability and machining loads in a single topology optimization process. The formulation is general and can be applied to a wide range of performance and manufacturability requirements.

Open Access
Article
Publication date: 29 July 2019

Ren Yang, Qi Song and Pu Chen

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix…

Abstract

Purpose

The purpose of this paper is to establish and implement a direct topological reanalysis algorithm for general successive structural modifications, based on the updating matrix triangular factorization (UMTF) method for non-topological modification proposed by Song et al. [Computers and Structures, 143(2014):60-72].

Design/methodology/approach

In this method, topological modifications are viewed as a union of symbolic and numerical change of structural matrices. The numerical part is dealt with UMTF by directly updating the matrix triangular factors. For symbolic change, an integral structure which consists of all potential nodes/elements is introduced to avoid side effects on the efficiency during successive modifications. Necessary pre- and post processing are also developed for memory-economic matrix manipulation.

Findings

The new reanalysis algorithm is applicable to successive general structural modifications for arbitrary modification amplitudes and locations. It explicitly updates the factor matrices of the modified structure and thus guarantees the accuracy as full direct analysis while greatly enhancing the efficiency.

Practical implications

Examples including evolutionary structural optimization and sequential construction analysis show the capability and efficiency of the algorithm.

Originality/value

This innovative paper makes direct topological reanalysis be applicable for successive structural modifications in many different areas.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 18 January 2022

Srinimalan Balakrishnan Selvakumaran and Daniel Mark Hall

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science…

1446

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science research approach. Current methods to create digital assets by capturing the state of existing buildings can provide high accuracy but are time-consuming, expensive and difficult.

Design/methodology/approach

Using design science research, this research identifies the need for a crowdsourced and cloud-based approach to reconstruct digital building assets. The research then develops and tests a fully functional smartphone application prototype. The proposed end-to-end smartphone workflow begins with data capture and ends with user applications.

Findings

The resulting implementation can achieve a realistic three-dimensional (3D) model characterized by different typologies, minimal trade-off in accuracy and low processing costs. By crowdsourcing the images, the proposed approach can reduce costs for asset reconstruction by an estimated 93% compared to manual modeling and 80% compared to locally processed reconstruction algorithms.

Practical implications

The resulting implementation achieves “good enough” reconstruction of as-is 3D models with minimal tradeoffs in accuracy compared to automated approaches and 15× cost savings compared to a manual approach. Potential facility management use cases include the issue and information tracking, 3D mark-up and multi-model configurators.

Originality/value

Through user engagement, development, testing and validation, this work demonstrates the feasibility and impact of a novel crowdsourced and cloud-based approach for the reconstruction of digital building assets.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 26 July 2021

David Marschall, Sigfrid-Laurin Sindinger, Herbert Rippl, Maria Bartosova and Martin Schagerl

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of…

Abstract

Purpose

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of this study was to develop a design methodology for such additively manufactured prototypes, considering efficient generation and structural simulation of boundary conformal non-periodic lattices, optimization of production parameters as well as experimental validation.

Design/methodology/approach

Multi-curved, sandwich structure-based demonstrators were designed, simulated and experimentally tested with boundary conformal lattice cells. The demonstrator’s non-periodic lattice cells were simplified by forward homogenization processes. To represent the stiffness of the top and bottom face sheet, constant isotropic and mapped transversely isotropic simulation approaches were compared. The dimensional accuracy of lattice cells and demonstrators were measured with a gauge caliper and a three-dimensional scanning system. The optimized process parameters for lattice structures were transferred onto a large volume laser sintering system. The stiffness of each finite element analysis was verified by an experimental test setup including a digital image correlation system.

Findings

The stiffness prediction of the mapped was superior to the constant approach and underestimated the test results with −6.5%. Using a full scale fairing the applicability of the development process was successfully demonstrated.

Originality/value

The design approach elaborated in this research covers aspects from efficient geometry generation over structural simulation to experimental testing of produced parts. This methodology is not only relevant in the context of motor sports but is transferrable for all additively manufactured large scale components featuring a complex lattice sub-structure and is, therefore, relevant across industries.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 25 March 2021

Bartłomiej Kulecki, Kamil Młodzikowski, Rafał Staszak and Dominik Belter

The purpose of this paper is to propose and evaluate the method for grasping a defined set of objects in an unstructured environment. To this end, the authors propose the method…

2073

Abstract

Purpose

The purpose of this paper is to propose and evaluate the method for grasping a defined set of objects in an unstructured environment. To this end, the authors propose the method of integrating convolutional neural network (CNN)-based object detection and the category-free grasping method. The considered scenario is related to mobile manipulating platforms that move freely between workstations and manipulate defined objects. In this application, the robot is not positioned with respect to the table and manipulated objects. The robot detects objects in the environment and uses grasping methods to determine the reference pose of the gripper.

Design/methodology/approach

The authors implemented the whole pipeline which includes object detection, grasp planning and motion execution on the real robot. The selected grasping method uses raw depth images to find the configuration of the gripper. The authors compared the proposed approach with a representative grasping method that uses a 3D point cloud as an input to determine the grasp for the robotic arm equipped with a two-fingered gripper. To measure and compare the efficiency of these methods, the authors measured the success rate in various scenarios. Additionally, they evaluated the accuracy of object detection and pose estimation modules.

Findings

The performed experiments revealed that the CNN-based object detection and the category-free grasping methods can be integrated to obtain the system which allows grasping defined objects in the unstructured environment. The authors also identified the specific limitations of neural-based and point cloud-based methods. They show how the determined properties influence the performance of the whole system.

Research limitations/implications

The authors identified the limitations of the proposed methods and the improvements are envisioned as part of future research.

Practical implications

The evaluation of the grasping and object detection methods on the mobile manipulating robot may be useful for all researchers working on the autonomy of similar platforms in various applications.

Social implications

The proposed method increases the autonomy of robots in applications in the small industry which is related to repetitive tasks in a noisy and potentially risky environment. This allows reducing the human workload in these types of environments.

Originality/value

The main contribution of this research is the integration of the state-of-the-art methods for grasping objects with object detection methods and evaluation of the whole system on the industrial robot. Moreover, the properties of each subsystem are identified and measured.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 20