Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article
Publication date: 6 July 2015

He-yong Xu, Shi-long Xing and Zheng-yin Ye

The purpose of this paper is to investigate and improve a new method of unstructured rotational dynamic overset grids, which can be used to simulate the unsteady flows

Abstract

Purpose

The purpose of this paper is to investigate and improve a new method of unstructured rotational dynamic overset grids, which can be used to simulate the unsteady flows around rotational parts of aircraft.

Design/methodology/approach

The computational domain is decomposed into two sub-domains, namely, the rotational sub-domain which contains the rotational boundaries, and the stationary sub-domain which contains the remainder flow field including the stationary boundaries. The artificial boundaries and restriction boundaries are used as the restriction condition to generate the entire computational grid, and then the overset grids are established according to the radius parameters of artificial boundaries set previously. The deformation of rotational boundary is treated by using the linear spring analogy method which is suitable for the dynamic unstructured grid. The unsteady Navier-Stokes/Euler equations are solved separately in the rotational sub-domain and stationary sub-domain, and data coupling is accomplished through the overlapping area. The least squares method is used to interpolate the flow variables for the artificial boundary points with a higher calculating precision. Implicit lower-upper symmetric-Gauss-Seidel (LU-SGS) time stepping scheme is implemented to accelerate the inner iteration during the unsteady simulation.

Findings

The airfoil steady flow, airfoil pitching unsteady flow, three-dimensional (3-D) rotor flow field, rotor-fuselage interaction unsteady flow field and the flutter exciting system unsteady flow field are numerically simulated, and the results have good agreements with the experimental data. It is shown that the present method is valid and efficient for the prediction of complicated unsteady problems which contain rotational dynamic boundaries.

Research limitations/implications

The results are entirely based on computational fluid dynamics (CFD), and the 3D simulations are based on the Euler equations in which the viscous effect is ignored. The current work shows further applicable potential to simulate unsteady flow around rotational parts of aircraft.

Practical implications

The current study can be used to simulate the two-dimensional airfoil pitching, 3-D rotor flow field, rotor-fuselage interaction and the flutter exciting system unsteady flow. The work will help the aircraft designer to get the unsteady flow character around rotational parts of aircraft.

Originality/value

A new type of rotational dynamic overset grids is presented and validated, and the current work has a significant contribution to the development of unstructured rotational dynamic overset grids.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 29 March 2011

J.M. Fernández Oro, K.M. Argüelles Diaz, C. Santolaria Morros and M. Galdo Vega

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Abstract

Purpose

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Design/methodology/approach

A numerical three‐dimensional (3D) simulation of the complete stage is carried out, using a commercial code, FLUENT, that resolves the 3D, unsteady turbulent flow inside the passages of a low‐speed axial flow fan. For the closure of turbulence, both Reynolds‐averaged Navier‐Stokes modeling and large eddy simulation (LES) techniques are used and compared. LES schemes are shown to be more accurate due to their good description of the largest eddy structures of the flow, but require careful near‐wall treatment.

Findings

The main goal is placed on the characterization of the unsteady flow structures involved in an axial flow blower of high reaction degree, relating them to working point variations and axial gap modifications.

Research limitations/implications

Complementarily, an experimental facility was developed to obtain a physical description of the flow inside the machine. Both static and dynamic measurements were used in order to describe the interaction phenomena. A five‐hole probe was employed for the static characterization, and hot wire anemometry techniques were used for the instantaneous response of the interaction.

Originality/value

The paper describes development of a methodology to understand the flow mechanisms related to the blade‐passing frequency in a single rotor‐stator interaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 26 September 2019

Salwa Fezai, Nader Ben-Cheikh, Brahim Ben-Beya and Taieb Lili

Two-dimensional incompressible fluid flows around a rectangular shape placed over a larger rectangular shape at low Reynolds numbers (Re) have been numerically analyzed in…

Abstract

Purpose

Two-dimensional incompressible fluid flows around a rectangular shape placed over a larger rectangular shape at low Reynolds numbers (Re) have been numerically analyzed in the present work. The vortex shedding is investigated at different arrangements of the two shapes allowing the investigation of three possible configurations. The calculations are carried out for several values of Re ranging from 1 to 200. The effect of the obstacle geometry on the vortex shedding is analyzed for crawling, steady and unsteady regimes. The analysis of the flow evolution shows that with increasing Re beyond a certain critical value, the flow becomes unstable and undergoes a bifurcation. This paper aims to observe that the transition of the unsteady regime is performed by a Hopf bifurcation. The critical Re beyond which the flow becomes unsteady is determined for each configuration. A special attention is paid to compute the drag and lift forces acting on the rectangular shapes, which allowed determining; the best configuration in terms of both drag and lift. The unsteady periodic wake is characterized by the Strouhal number, which varies with the Re and the obstacle geometry. Hence, the values of vortex shedding frequencies are calculated in this work.

Design/methodology/approach

The dimensionless Navier–Stokes equations were numerically solved using the following numerical technique based on the finite volume method. The temporal discretization of the time derivative is performed by an Euler backward second-order implicit scheme. Non-linear terms are evaluated explicitly; while, viscous terms are treated implicitly. The strong velocity–pressure coupling present in the continuity and the momentum equations are handled by implementing the projection method.

Findings

The present paper aims to numerically study the effect of the obstacle geometry on the vortex shedding and on the drag and lift forces to analyze the flow structure around three configurations at crawling, steady and unsteady regimes.

Originality/value

A special attention is paid to compute the drag and lift forces acting on the rectangular shapes, which allowed determining; the best shapes configuration in terms of both drag and lift.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 11 January 2020

Adrián Vazquez Gonzalez, Andrés Meana-Fernández and Jesús Manuel Fernández

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF…

Abstract

Purpose

The purpose of the paper is to quantify the impact of the non-uniform flow generated by the upstream stator on the generation and convection of the tip leakage flow (TLF) structures in the passages of the rotor blades in a low-speed axial fan.

Design/methodology/approach

A full three dimensional (3D)-viscous unsteady Reynolds-averaged Navier-stokes (RANS) (URANS) simulation of the flow within a periodic domain of the axial stage has been performed at three different flow rate coefficients (φ = 0.38, 0.32, 0.27) using ReNormalization Group k-ε turbulence modelling. A typical tip clearance of 2.3 per cent of the blade span has been modelled on a reduced domain comprising a three-vaned stator and a two-bladed rotor with circumferential periodicity. A non-conformal grid with hybrid meshing, locally refined O-meshes on both blades and vanes walls with (100 × 25 × 80) elements, a 15-node meshed tip gap and circumferential interfaces for sliding mesh computations were also implemented. The unsteady motion of the rotor has been covered with 60 time steps per blade event. The simulations were validated with experimental measurements of the static pressure in the shroud of the blade tip region.

Findings

It has been observed that both TLF and intensities of the tip leakage vortex (TLV) are significantly influenced by upstream stator wakes, especially at nominal and partial load conditions. In particular, the leakage flow, which represents 12.4 per cent and 11.3 per cent of the working flow rate, respectively, has shown a clear periodic fluctuation clocked with the vane passing period in the relative domain. The periodic fluctuation of the TLF is in the range of 2.8-3.4 per cent of the mean value. In addition, the trajectory of the tip vortex is also notably perturbed, with root-mean squared fluctuations reaching up to 18 per cent and 6 per cent in the regions of maximum interaction at 50 per cent and 25 per cent of the blade chord for nominal and partial load conditions, respectively. On the contrary, the massive flow separation observed in the tip region of the blades for near-stall conditions prevents the formation of TLV structures and neglects any further interaction with the upstream vanes.

Research limitations/implications

Despite the increasing use of large eddy simulation modelling in turbomachinery environments, which requires extremely high computational costs, URANS modelling is still revealed as a useful technique to describe highly complex viscous mechanisms in 3D swirl flows, such as unsteady tip flow structures, with reasonable accuracy.

Originality/value

The paper presents a validated numerical model that simulates the unsteady response of the TLF to upstream perturbations in an axial fan stage. It also provides levels of instabilities in the TLV derived from the deterministic non-uniformities associated to the vane wakes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 26 July 2018

Rohana Abdul Hamid, Roslinda Nazar and Ioan Pop

This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust…

Abstract

Purpose

This present aims to present the numerical study of the unsteady stretching/shrinking flow of a fluid-particle suspension in the presence of the constant suction and dust particle slip on the surface.

Design/methodology/approach

The governing partial differential equations for the two phases flows of the fluid and the dust particles are reduced to the pertinent ordinary differential equations using a similarity transformation. The numerical results are obtained using the bvp4c function in the Matlab software.

Findings

The results revealed that in the decelerating shrinking flow, the wall skin friction is higher in the dusty fluid when compared to the clean fluid. In addition, the effect of the fluid-particle interaction parameter to the fluid-phase can be seen more clearly in the shrinking flow. Other non-dimensional physical parameters such as the unsteadiness parameter, the mass suction parameter, the viscosity ratio parameter, the particle slip parameter and the particle loading parameter are also considered and presented in figures. Further, the second solution is discovered in this problem and the solution expanded with higher unsteadiness and suction values. Hence, the stability analysis is performed, and it is confirmed that the second solution is unstable.

Practical implications

In practice, the flow conditions are commonly varying with time; thus, the study of the unsteady flow is very crucial and useful. The problem of unsteady flow of a dusty fluid has a wide range of possible applications such as in the centrifugal separation of particles, sedimentation and underground disposable of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, limited discoveries can be found over an unsteady shrinking flow. Indeed, this paper managed to obtain the second (dual) solutions, and stability analysis is performed. Furthermore, the authors also considered the artificial particle-phase viscosity, which is an important term to study the particle-particle and particle-wall interactions. With the addition of this term, the effects of the particle slip and suction parameters can be investigated. Very few studies in the dusty fluid embedded this parameter in their problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 9 August 2018

Arpan Das and Shaligram Tiwari

Growing application of micro aerial vehicle (MAV) sets in demand for accurate computations of low Reynolds number flows past their wings. The purpose of this study is to…

Abstract

Purpose

Growing application of micro aerial vehicle (MAV) sets in demand for accurate computations of low Reynolds number flows past their wings. The purpose of this study is to investigate the effect of unsteady freestream velocity or wind gust on a harmonically plunging symmetric NACA0012 airfoil at Re = 1,000. The influence of unsteady parameters, such as reduced frequency of plunging motion (0.25 < k < 1.5), non-dimensional plunging amplitude (ho = 0.2) and non-dimensional amplitude of wind gust (0.1 = λ = 0.4) has been studied.

Design/methodology/approach

Computations have been carried out using commercial software ANSYS Fluent 16.0. To incorporate the plunging motion, the entire reference frame is oscillating, and thereby, a source term is added in the Navier–Stokes equation.

Findings

The results have been presented in the form of streamlines, vorticity contours, lift and drag signals and their spectra. It is observed that the ratio of plunging frequency to gust frequency (f/fg) has strong influence on periodic characteristics of unsteady wake. It has also been observed that for a fixed plunging amplitude, an increase in value of k results into a change from positive drag to thrust.

Practical implications

The research has implications in the development of MAV.

Originality/value

This study is intended to get a better understanding of unsteady parameters associated with gusty flow in flapping wing applications and possible ways to alleviate its adverse effect on it.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 8 May 2018

Baoling Cui, Xiaodi Li, Kun Rao, Xiaoqi Jia and Xiaolin Nie

Radial vibration of horizontal centrifugal pump has a close association with radial exciting forces. The purpose of this paper is to analyze the unsteady radial force in…

Abstract

Purpose

Radial vibration of horizontal centrifugal pump has a close association with radial exciting forces. The purpose of this paper is to analyze the unsteady radial force in multistage centrifugal pump with double volute in detail and investigate the relevance of static pressure, radial force and radial vibration.

Design/methodology/approach

The unsteady numerical simulation with realizable k-ε turbulence model was carried out for a multistage centrifugal pump with double volute using computational fluid dynamics codes Fluent. The performance tests were conducted by use of a closed loop system and performance curves from numerical simulation agree with that of experiment. Vibration tests were carried out by vibration probes instrumented on the bearing cover of pump near no-driven end. Fast Fourier transform was used to obtain the frequency components of radial forces on the impellers from numerical simulation, which are compared with ones of radial vibration from experiment in Y and Z direction. And the static pressure distributions in the impeller were analyzed under different flow rates.

Findings

The symmetrical double volute can effectively balance radial forces. The maximum radial force and vibration velocity appear at 0.6 Q among the three flow rates 0.6 Q, Q and 1.2 Q. The frequencies corresponding to relatively large amplitude of vibration velocities and radial forces on the impellers in Y direction are blade passing frequency of the impellers. Blade passing frequency of first-stage impeller and shaft frequency are predominating in Z direction. It indicates that the radial vibration of centrifugal pump is closely related to the unsteady radial force.

Originality/value

The unsteady radial forces of the impeller in multistage centrifugal pump with double volute were comprehensively analyzed. The radial forces should be considered to balance during the design of multistage centrifugal pump.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 7 June 2019

Yingchun Zhang, Nesrin Ozalp and Gongnan Xie

The purpose of this paper is to investigate the unsteady flow past through a permeable diamond-shaped cylinder and to study the effects of the aspect ratios and Darcy…

Abstract

Purpose

The purpose of this paper is to investigate the unsteady flow past through a permeable diamond-shaped cylinder and to study the effects of the aspect ratios and Darcy numbers of the cylinder.

Design/methodology/approach

The lattice Boltzmann method with D2Q9 lattice model was used to simulate the unsteady flow through permeable diamond-shaped cylinders. The present numerical method is validated against the available data.

Findings

The key findings are that increasing the permeability enhances the suppression of vortex shedding, and that the Strouhal number is directly proportion to the Darcy number, Reynolds number and the aspect ratio of the porous cylinder.

Originality/value

The present study considers unsteady laminar flow past through single permeable diamond-shaped cylinder. According to the authors’ knowledge, very few studies have been found in this field. The present findings are novel and original, which in turn can attract wide attention and citations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2004

Alvaro Valencia and Williams Calderón

Flow structure and convective heat transfer in a plane channel with in‐line mounted rectangular bars have been investigated for different bar sizes in the Reynolds number…

Abstract

Flow structure and convective heat transfer in a plane channel with in‐line mounted rectangular bars have been investigated for different bar sizes in the Reynolds number range corresponding to steady laminar flow to unsteady transitional flow. Numerical results are reported for the thermal entrance region with six in‐line mounted bars and for the case with spatially periodic mounted bars. Data for heat transfer and pressure drop are presented for 100≤Re≤1,000 and bar heights 0.24≤d/H≤0.48. The unsteady Navier‐Stokes equations and the energy equation have been solved by a finite‐volume code with staggered grids combined with SIMPLEC pressure correction. Flow and heat transfer characteristics in the different rows are strongly dependent on Re and d/H. The flow structure and temperature field around the sixth row are compared qualitatively well with those calculated with periodic boundary conditions, however, the comparison of mean Nusselt number and friction factor shows differences for high Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 4 January 2016

Pier Luigi Vitagliano, Mauro Minervino, Domenico Quagliarella and Pietro Catalano

– This paper aims to simulate unsteady flows with surfaces in relative motion using a multi-block structured flow solver.

Abstract

Purpose

This paper aims to simulate unsteady flows with surfaces in relative motion using a multi-block structured flow solver.

Design/methodology/approach

A procedure for simulating unsteady flows with surfaces in relative motion was developed, based upon a multi-block structured U-RANS flow solver1. Meshes produced in zones of the flow field with different rotation speed are connected by sliding boundaries. The procedure developed guarantees that the flux conservation properties of the original scheme are maintained across the sliding boundaries during the rotation at every time step.

Findings

The solver turns out to be very efficient, allowing computation in scalar mode with single core processors as well as in parallel. It was tested by simulating the unsteady flow on a propfan configuration with two counter-rotating rotors. The comparison of results and performances with respect to an existing commercial flow solver (unstructured) is reported.

Originality/value

This paper fulfils an identified need to allow for efficient unsteady flow computations (structured solver) with different bodies in relative motion.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 2000