Search results

21 – 30 of over 1000
Article
Publication date: 10 August 2010

M. Kharati Koopaee, M.M. Alishahi and H. Emdad

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in…

Abstract

Purpose

The purpose of this paper is to discuss the capability of nonlinear frequency domain (NLFD) method in predicting surface pressure coefficient presented in the time domain in unsteady transonic flows.

Design/methodology/approach

In this research, the solution and spatial operator are approximated by discrete form of Fourier transformation and resulting nonlinear equations are solved by use of pseudo‐spectral approach. Considered transonic flows involve different flow pattern on the airfoil surfaces. One of the test cases involves moving shocks on both lower and upper airfoil surfaces and in the two other test cases a moving shock occurs only on the upper surface.

Findings

Pressure distributions presented in the time domain using NLFD are compared with three test cases. Results show that NLFD predicts reasonable pressure distributions in time domain except in vicinity of shock positions. Although this method may predict unfair results near shock positions, however gives good estimates for global properties such as lift coefficient.

Originality/value

In the previous works on NLFD method, the flow field results have been limited to representing the pressure in the frequency domain or global coefficients such as lift coefficients. No details of pressure distributions in the time domain have been provided in such investigations. In this research, by presenting the pressure in the time domain, the conditions on which good pressure distributions are obtained are demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 October 2018

Siya Jiang and Song Fu

The purpose of the paper is to propose some modifications to the SIMPLE (semi-implicit method for pressure-linked equations) algorithm. These modifications can ensure the…

Abstract

Purpose

The purpose of the paper is to propose some modifications to the SIMPLE (semi-implicit method for pressure-linked equations) algorithm. These modifications can ensure the numerical robustness and optimize computational efficiency. They remarkably promote the ability of the SIMPLE algorithm for incompressible DNS (direct numerical simulation) of multiscale problems, such as transitional flows and turbulent flows, by improving the properties of dispersion and dissipation.

Design/methodology/approach

The MDCD (minimized dispersion and controllable dissipation) scheme and MMIM (modified momentum interpolation method) are introduced. Six typical test cases are used to validate the modified algorithm, including the linear convective flow, lid-driven cavity flow, laminar boundary layer, Taylor vortex and DHIT (decaying homogenous isotropic turbulence). Particularly, a highly unsteady DNS of separated-flow transition in turbomachinery is precisely predicted by the modified algorithm.

Findings

The numerical examples show the distinct superiority of the modified algorithm in both internal flows and external flows. The advantages of the MDCD scheme and MMIM make the SIMPLE algorithm a promising method for DNS.

Originality/value

Some effective modifications to the SIMPLE algorithm are addressed. It is the first attempt to introduce the MDCD approach into the SIMPLE-type algorithms. The new algorithm is especially suitable for the incompressible DNS of convection-dominated flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1985

Vinicio Magi and Gaetano Vacca

A new implementation of the implicit lambda scheme recently proposed by other authors is provided. One‐dimensional compressible non‐isentropic flows inside four different nozzles…

Abstract

A new implementation of the implicit lambda scheme recently proposed by other authors is provided. One‐dimensional compressible non‐isentropic flows inside four different nozzles and Fanno and Rayleigh's subsonic/ supersonic flows are computed, which demonstrate the superior efficiency and accuracy of the present formulation.

Details

Engineering Computations, vol. 2 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 8 May 2018

Emmanuel Leveque, Hatem Touil, Satish Malik, Denis Ricot and Alois Sengissen

The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of…

Abstract

Purpose

The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of engineering interest is still at an early stage. This paper aims to outline an LB wall-modeled large-eddy simulation (WMLES) solver.

Design/methodology/approach

The solver is dedicated to complex high-Reynolds flows in the context of WMLES. It relies on an improved LB scheme and can handle complex geometries on multi-resolution block structured grids.

Findings

Dynamic and acoustic characteristics of a turbulent airflow past a rod-airfoil tandem are examined to test the capabilities of this solver. Detailed direct comparisons are made with both experimental and numerical reference data.

Originality/value

This study allows assessing the potential of an LB approach for industrial CFD applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2023

Mostafa Esmaeili and Amir Hossein Rabiee

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular…

Abstract

Purpose

This study aims to numerically explore the heat transfer characteristics in turbulent two-degree-of-freedom vortex-induced vibrations (VIVs) of three elastically mounted circular cylinders.

Design/methodology/approach

The cylinders are at the vertices of an isosceles triangle with a base and height that are the same. The finite volume technique is used to calculate the Reynolds-averaged governing equations, whereas the structural dynamics equations are solved using the explicit integration method. Simulations are performed for three different configurations, constant mass ratio and natural frequency, as well as distinct reduced velocity values.

Findings

As a numerical challenge, the super upper branch observed in the experiment is well-captured by the current numerical simulations. According to the computation findings, the vortex-shedding around the cylinders increases flow mixing and turbulence, hence enhancing heat transfer. At most reduced velocities, the Nusselt number of downstream cylinders is greater than that of upstream cylinders due to the impact of wake-induced vibration, and the maximum heat transfer improvement of these cylinders is 21% (at Ur = 16), 23% (at Ur = 5) and 20% (at Ur = 15) in the first, second and third configurations, respectively.

Originality/value

The main novelty of this study is inspecting the thermal behavior and turbulent flow–induced vibration of three circular cylinders in the triangular arrangement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2004

L. Djayapertapa and C.B. Allen

Transonic flutter and active flap control, in two dimensions, are simulated by coupling independent structural dynamic and inviscid aerodynamic models, in the time domain. A…

2029

Abstract

Transonic flutter and active flap control, in two dimensions, are simulated by coupling independent structural dynamic and inviscid aerodynamic models, in the time domain. A flight control system, to actively control the trailing edge flap motion, has also been incorporated and, since this requires perfect synchronisation of fluid, structure and control signal, the “strong” coupling approach is adopted. The computational method developed is used to perform transonic aeroelastic and aeroservoelastic calculations in the time domain, and used to compute stability (flutter) boundaries of 2D wing sections. Open and closed loop simulations show that active control can successfully suppress flutter and results in a significant increase in the allowable speed index in the transonic regime. It is also shown that active control is still effective when there is free‐play in the control surface hinge. Flowfield analysis is used to investigate the nature of flutter and active control, and the fundamental importance of shock wave motion in the vicinity of the flap is demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 May 2009

Mohamed A. Antar and Maged A.I. El‐Shaarawi

The purpose of this paper is to investigate the problem of entropy generation around a spinning/non‐spinning solid sphere subjected to uniform heat flux boundary condition in the…

Abstract

Purpose

The purpose of this paper is to investigate the problem of entropy generation around a spinning/non‐spinning solid sphere subjected to uniform heat flux boundary condition in the forced‐convection regime.

Design/methodology/approach

The governing continuity, momentum, energy and entropy generation equations are numerically solved for a wide range of the controlling parameters; Reynolds number and the dimensionless spin number.

Findings

The dimensionless overall total entropy generation increases with the dimensionless spin number. The effect of increasing the spin number on the fluid‐friction component of entropy generation is more significant compared to its effect on heat transfer entropy generation.

Research limitations/implications

Since the boundary‐layer analysis is used, the flow is presented up to only the point of external flow separation.

Practical implications

Entropy generation analysis can be used to evaluate the design of many heat transfer systems and suggest design improvements.

Originality/value

A review in the open literature indicated that no study is available for the entropy generation in the unconfined flow case about a spinning sphere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 April 2018

Siddharth Suhas Kulkarni, Craig Chapman, Hanifa Shah and David John Edwards

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating…

Abstract

Purpose

The purpose of this paper is to conduct a comparative analysis between a straight blade (SB) and a curved caudal-fin tidal turbine blade (CB) and to examine the aspects relating to geometry, turbulence modelling, non-dimensional forces lift and power coefficients.

Design/methodology/approach

The comparison utilises results obtained from a default horizontal axis tidal turbine with turbine models available from the literature. A computational design method was then developed and implemented for “horizontal axis tidal turbine blade”. Computational fluid dynamics (CFD) results for the blade design are presented in terms of lift coefficient distribution at mid-height blades, power coefficients and blade surface pressure distributions. Moving the CB back towards the SB ensures that the total blade height stays constant for all geometries. A 3D mesh independency study of a “straight blade horizontal axis tidal turbine blade” modelled using CFD was carried out. The grid convergence study was produced by employing two turbulence models, the standard k-ε model and shear stress transport (SST) in ANSYS CFX. Three parameters were investigated: mesh resolution, turbulence model, and power coefficient in the initial CFD, analysis.

Findings

It was found that the mesh resolution and the turbulence model affect the power coefficient results. The power coefficients obtained from the standard k-ε model are 15 to 20 per cent lower than the accuracy of the SST model. Further analysis was performed on both the designed blades using ANSYS CFX and SST turbulence model. The variation in pressure distributions yields to the varying lift coefficient distribution across blade spans. The lift coefficient reached its peak between 0.75 and 0.8 of the blade span where the total lift accelerates with increasing pressure before drastically dropping down at 0.9 onwards due to the escalating rotational velocity of the blades.

Originality/value

The work presents a computational design methodological approach that is entirely original. While this numerical method has proven to be accurate and robust for many traditional tidal turbines, it has now been verified further for CB tidal turbines.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 November 2002

M.A. Antar and M.A.I. El‐Shaarawi

Boundary‐layer flow around a spinning liquid sphere moving steadily in a gas stream is investigated numerically. The shear stress exerted on the sphere's surface results in…

Abstract

Boundary‐layer flow around a spinning liquid sphere moving steadily in a gas stream is investigated numerically. The shear stress exerted on the sphere's surface results in surface rotation in the meridional direction in addition to the azimuthal velocity resulting from the spinning of the liquid sphere. The parameters controlling the flow around the sphere are the external flow Reynolds number (Re), the liquid‐to‐gas viscosity ratio (μ*) and the spinning parameter (Rer/Re)2. The effect of these parameters on the velocity components (namely the meridional, radial and azimuthal velocity components) and on the shear stress is shown. Moreover, their effect on the location of external flow point of separation is also demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Pablo A. Caron, Marcela A. Cruchaga and Axel E. Larreteguy

The present work is a numerical study of a breaking dam problem. The purpose of this paper is to assess the effect of turbulence and surface tension models in the prediction of…

304

Abstract

Purpose

The present work is a numerical study of a breaking dam problem. The purpose of this paper is to assess the effect of turbulence and surface tension models in the prediction of the interface position in a long-term analysis. Additionally, dimensional effects are analyzed by carrying out both 2D and 3D simulations.

Design/methodology/approach

Finite volume simulations performed with the different models are compared between them and contrasted with numerical results computed using other numerical techniques and experimental data.

Findings

The reported numerical results are in general in good agreement with experimental results available in the literature. They are also consistent with numerical solutions of other authors obtained using different numerical techniques. The results show that the laminar simulations exhibit strong mesh size dependency, while the turbulence models seem to help in producing mesh-independent solutions. Surface tension modeling does not seem to play a relevant role in the interface evolution.

Practical implications

Model validation.

Originality/value

The value of the present work encompass the comparison of different flow conditions used to simulate a free surface problem and their validation by contrasting numerical results with experiments. Also, the results shown in the present work are a contribution to the understanding of the role of some specific aspects of the models in the simulation of the proposed problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of over 1000