Search results

1 – 4 of 4
Open Access
Article
Publication date: 12 August 2022

Bolin Gao, Kaiyuan Zheng, Fan Zhang, Ruiqi Su, Junying Zhang and Yimin Wu

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental…

Abstract

Purpose

Intelligent and connected vehicle technology is in the ascendant. High-level autonomous driving places more stringent requirements on the accuracy and reliability of environmental perception. Existing research works on multitarget tracking based on multisensor fusion mostly focuses on the vehicle perspective, but limited by the principal defects of the vehicle sensor platform, it is difficult to comprehensively and accurately describe the surrounding environment information.

Design/methodology/approach

In this paper, a multitarget tracking method based on roadside multisensor fusion is proposed, including a multisensor fusion method based on measurement noise adaptive Kalman filtering, a global nearest neighbor data association method based on adaptive tracking gate, and a Track life cycle management method based on M/N logic rules.

Findings

Compared with fixed-size tracking gates, the adaptive tracking gates proposed in this paper can comprehensively improve the data association performance in the multitarget tracking process. Compared with single sensor measurement, the proposed method improves the position estimation accuracy by 13.5% and the velocity estimation accuracy by 22.2%. Compared with the control method, the proposed method improves the position estimation accuracy by 23.8% and the velocity estimation accuracy by 8.9%.

Originality/value

A multisensor fusion method with adaptive Kalman filtering of measurement noise is proposed to realize the adaptive adjustment of measurement noise. A global nearest neighbor data association method based on adaptive tracking gate is proposed to realize the adaptive adjustment of the tracking gate.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 15 September 2021

Qun Lim, Yi Lim, Hafiz Muhammad, Dylan Wei Ming Tan and U-Xuan Tan

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on…

1350

Abstract

Purpose

The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on time-to-collision and trajectory of both the detected and ego vehicle (motorcycle).

Design/methodology/approach

This comes in three approaches. First, time-to-collision value is to be calculated based on low-cost camera video input. Second, the trajectory of the detected vehicle is predicted based on video data in the 2 D pixel coordinate. Third, the trajectory of the ego vehicle is predicted via the lean direction of the motorcycle from a low-cost inertial measurement unit sensor.

Findings

This encompasses a comprehensive Advanced FWC system which is an amalgamation of the three approaches mentioned above. First, to predict time-to-collision, nested Kalman filter and vehicle detection is used to convert image pixel matrix to relative distance, velocity and time-to-collision data. Next, for trajectory prediction of detected vehicles, a few algorithms were compared, and it was found that long short-term memory performs the best on the data set. The last finding is that to determine the leaning direction of the ego vehicle, it is better to use lean angle measurement compared to riding pattern classification.

Originality/value

The value of this paper is that it provides a POC FWC system that considers time-to-collision and trajectory of both detected and ego vehicle (motorcycle).

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

964

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 3 December 2020

Peiqing Li, Huile Wang, Zixiao Xing, Kanglong Ye and Qipeng Li

The operation state of lithium-ion battery for vehicle is unknown and the remaining life is uncertain. In order to improve the performance of battery state prediction, in this…

1736

Abstract

Purpose

The operation state of lithium-ion battery for vehicle is unknown and the remaining life is uncertain. In order to improve the performance of battery state prediction, in this paper, a joint estimation method of state of charge (SOC) and state of health (SOH) for lithium-ion batteries based on multi-scale theory is designed.

Design/methodology/approach

In this paper, a joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is designed. The venin equivalent circuit model and fast static calibration method are used to fit the relationship between open-circuit voltage and SOC, and the resistance and capacitance parameters in the model are identified based on exponential fitting method. A battery capacity model for SOH estimation is established. A multi-time scale EKF filtering algorithm is used to estimate the SOC and SOH of lithium-ion batteries.

Findings

The SOC and SOH changes in dynamic operation of lithium-ion batteries are accurately predicted so that batteries can be recycled more effectively in the whole vehicle process.

Originality/value

A joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is accurately predicted and can be recycled more effectively in the whole vehicle process.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only Open Access

Year

Content type

1 – 4 of 4