Search results

1 – 10 of 561
To view the access options for this content please click here
Article
Publication date: 10 June 2021

Sinan Keiyinci and Kadir Aydin

The endurance of small unmanned air vehicles (UAVs) is directly associated with the energy density of the propulsion system used. As the batteries commonly used in small…

Abstract

Purpose

The endurance of small unmanned air vehicles (UAVs) is directly associated with the energy density of the propulsion system used. As the batteries commonly used in small UAVs have a relatively low energy density, they are not sufficient for long-term endurance tasks. The purpose of this paper is to offer a solution to increase the endurance of a concept small UAV with combination of different power sources. The design, construction and ground tests of fuel cell-powered hybrid propulsion systems are presented in this paper.

Design/methodology/approach

The power requirements of a concept UAV were calculated according to aerodynamic calculations and then, hybrid propulsion system sources are determined. The hybrid system consists of a 100 W scale proton-exchange membrane (PEM) type fuel cell stack, lithium-polymer battery, solar cells and power management system (PMS). Subsequently, this hybrid power system was integrated with the new design of PMS and then series of ground tests were carried out.

Findings

This experimental study proved that it is theoretically possible to obtain an endurance of around 3 h for concept UAV with the proposed hybrid system.

Practical implications

The research study shows that fuel cell-based hybrid propulsion system with the proposed PMS can be widely used to obtain extended endurance in small UAVs.

Originality/value

A hybrid propulsion system with a novel PMS unit is proposed for small UAVs and the ground tests were implemented.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 4 January 2019

Anna Maria Mazur and Roman Domanski

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The…

Abstract

Purpose

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose of this paper is to study the feasibility of applying the environmental-friendly energy source in an unmanned aerial vehicles (UAVs) propulsion system.

Design/methodology/approach

Currently, the majority of UAVs are still powered by conventional combustion engines. An electric propulsion system is most commonly found in civilian micro and mini UAVs. The UAV classification is reviewed in this study. This paper focuses mainly on application of electric propulsion systems in UAVs. Investigated hybrid energy systems consist of fuel cells, Li-ion batteries, super-capacitors and photovoltaic (PV) modules. Current applications of fuel cell systems in UAVs are also presented.

Findings

The conducted research shows that hybridization allows for better energy management and operation of every energy source onboard the UAV within its limits. The hybrid energy system design should be created to maximize system efficiency without compromising the performance of the aircraft.

Practical implications

The presented study highlights the reduction of the energy consumption, necessary to perform the mission and maximizing of the endurance with simultaneous decrease in emissions and noise level.

Originality/value

The conducted research studies the feasibility of implementing the environmental-friendly hybrid electric propulsion systems in UAVs that offers high efficiency, reliability, controllability, lack of thermal and noise signature, thus, providing quiet and clean drive with low vibration levels. This paper highlights the main challenges and current research on fuel cell in aviation and draws attention to fuel cell – electric system modeling, hybridization and energy management.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 13 June 2019

Samia Ben Amarat and Peng Zong

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning…

Abstract

Purpose

This paper aims to present a comprehensive review in major research areas of unmanned air vehicles (UAVs) navigation, i.e. three degree-of-freedom (3D) path planning, routing algorithm and routing protocols. The paper is further aimed to provide a meaningful comparison among these algorithms and methods and also intend to find the best ones for a particular application.

Design/methodology/approach

The major UAV navigation research areas are further classified into different categories based on methods and models. Each category is discussed in detail with updated research work done in that very domain. Performance evaluation criteria are defined separately for each category. Based on these criteria and research challenges, research questions are also proposed in this work and answered in discussion according to the presented literature review.

Findings

The research has found that conventional and node-based algorithms are a popular choice for path planning. Similarly, the graph-based methods are preferred for route planning and hybrid routing protocols are proved better in providing performance. The research has also found promising areas for future research directions, i.e. critical link method for UAV path planning and queuing theory as a routing algorithm for large UAV networks.

Originality/value

The proposed work is a first attempt to provide a comprehensive study on all research aspects of UAV navigation. In addition, a comparison of these methods, algorithms and techniques based on standard performance criteria is also presented the very first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 16 March 2020

Mehmet Konar

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance…

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance for morphing unmanned aerial vehicle (UAV) design.

Design/methodology/approach

Some of the most important issues in the design of UAV are the design of thrust system and determination of the endurance of the UAV. Although propeller selection is very important for the thrust system design, battery selection has the utmost importance for the determination of UAV endurance. In this study, the calculations of maximum acceleration and endurance required by ZANKA-II during the flight are considered simultaneously. For this purpose, a model based on the ABC algorithm is proposed for the morphing UAV design, aiming to achieve the maximum acceleration and endurance. In the proposed model, the propeller diameter, propeller pitch and battery values used in morphing UAV's power system design are selected as the input parameters; maximum acceleration and endurance are selected as the output parameters. To obtain the maximum acceleration and endurance, the optimum input parameters are determined through the ABC algorithm-based model.

Findings

Considerable improvements on maximum acceleration and endurance of morphing UAV with ABC algorithm-based model are obtained.

Research limitations/implications

The endurance and acceleration due to the thrust are two separate parameters that are not normally proportional to each other. In this study, optimization of UAV’s endurance and acceleration is considered with equal importance.

Practical implications

Using artificial intelligence techniques causes fast and simple optimization for determination of UAV’s endurance and acceleration with equal importance. In the simulation studies with ABC algorithm, satisfactory results are obtained.

Social implications

The results of the study have showed that the proposed approach could be an alternative method for UAV designers.

Originality/value

Providing a new and efficient method saves time and reduces cost in calculations of maximum acceleration and endurance of the UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 2 May 2017

Ali Dinc

This paper aims to present a genuine code developed for multi-objective optimization of selected parameters of a turboprop unmanned air vehicle (UAV) for minimum…

Abstract

Purpose

This paper aims to present a genuine code developed for multi-objective optimization of selected parameters of a turboprop unmanned air vehicle (UAV) for minimum landing-takeoff (LTO) nitrogen oxide (NOx) emissions and minimum equivalent power specific fuel consumption (ESFC) at loiter (aerial reconnaissance phase of flight) by using a genetic algorithm.

Design/methodology/approach

The genuine code developed in this study first makes computations on preliminary sizing of a UAV and its turboprop engine by analytical method for a given mission profile. Then, to minimize NOx emissions or ESFC or both of them, single and multi-objective optimization was done for the selected engine design parameters.

Findings

In single objective optimization, NOx emissions were reduced by 49 per cent from baseline in given boundaries or constraints of compressor pressure ratio and compressor polytropic efficiency in the first case. In second case, ESFC was improved by 25 per cent from baseline. In multi-objective optimization case, where previous two objectives were considered together, NOx emissions and ESFC decreased by 26.6 and 9.5 per cent from baseline, respectively.

Practical implications

Variation and trend in the NOx emission index and ESFC were investigated with respect to two engine design parameters, namely, compressor pressure ratio and compressor polytropic efficiency. Engine designers may take into account the findings of this study to reach a viable solution for the bargain between NOx emission and ESFC.

Originality/value

UAVs have different flight mission profiles or characteristics compared to manned aircraft. Therefore, they are designed in a different philosophy. As a number of UAV flights increase in time, fuel burn and LTO NOx emissions worth investigating due to operating costs and environmental reasons. The study includes both sizing and multi-objective optimization of an UAV and its turboprop engine in coupled form; compared to manned aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 2020

Mehmet Konar, Aydin Turkmen and Tugrul Oktay

The purpose of this paper is to use an ABC algorithm to improve the thrust–torque ratio of a rotating-wing unmanned aerial vehicle (UAV) model.

Abstract

Purpose

The purpose of this paper is to use an ABC algorithm to improve the thrust–torque ratio of a rotating-wing unmanned aerial vehicle (UAV) model.

Design/methodology/approach

The design of UAVs, such as aircraft, drones, helicopters, has become one of the popular engineering areas with the development of technology. This study aims to improve the value of thrust–torque ratio of an unmanned helicopter. For this purpose, an unmanned helicopter was built at the Faculty of Aeronautics and Astronautics, Erciyes University. The maximum thrust–torque ratio was calculated considering the blade length, blade chord width, blade mass density and blade twist angle. For calculation, artificial bee colony (ABC) algorithm was used. By using ABC algorithm, the maximum thrust–torque ratio was obtained against the optimum input values. For this purpose, a model with four inputs and a single output is formed. In the generated system model, optimum thrust–torque ratio was calculated by changing the input values used in the ±5% range. As a result of this study, approximately 31% improvement was achieved. According to these results, the proposed approach will provide convenience to the designers in the design of the rotating-wing UAV.

Findings

According to these results, approximately 31% improvement was achieved, and the proposed approach will provide convenience to the designers in the design of the rotating-wing UAV.

Research limitations/implications

It takes a long time to obtain the optimum thrust–torque ratio value through the ABC algorithm method.

Practical implications

Using ABC algorithm provides to improve the value of thrust–torque ratio of an unmanned helicopter. With this algorithm, unmanned helicopter flies more than ever. Thus, the presented method based on the ABC algorithm is more efficient.

Social implications

The application of the ABC algorithm method can be used effectively to calculate the thrust–torque ratio in UAV.

Originality/value

Providing an original and penetrating a method that saves time and reduces the cost to improve the value of thrust–torque ratio of an unmanned helicopter.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

To view the access options for this content please click here
Article
Publication date: 3 January 2017

Peter Hooper and Tarik Al-Shemmeri

This paper aims to present experimental results of gasoline-fuelled engine operation of a crankcase-scavenged two-stroke cycle engine used for unmanned air vehicle (UAV)…

Abstract

Purpose

This paper aims to present experimental results of gasoline-fuelled engine operation of a crankcase-scavenged two-stroke cycle engine used for unmanned air vehicle (UAV)/unmanned air system application and to cross correlate with computational fluid dynamic modelling results.

Design/methodology/approach

Computational modelling of the engine system was conducted using the WAVE software supported by the experimental research and development via dynamometer testing of a spark ignition UAV engine to construct a validated computational model exploring a range of fuel delivery options.

Findings

Experimental test data and computational simulation have allowed an assessment of the potential advantages of applying direct in-cylinder fuel injection.

Practical implications

The ability to increase system efficiency offers significant advantages in terms of maximising limited resources and extending mission duration capabilities. The computational simulation and validation via experimental test experience provides a means of assessment of possibilities that are costly to explore experimentally and offers added confidence to be able to investigate possibilities for the development of similar future engine designs.

Originality/value

The software code used has not been applied to such crankcase-scavenged two-stroke cycle engines and provides a valuable facility for further simulation of the twin cylinder horizontally opposed design to offer further system optimisation and exploration of future possibilities.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 20 June 2019

Mehmet Konar

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system…

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system (ANFIS) for unmanned aerial vehicle (UAV) winglet design.

Design/methodology/approach

The winglet design of UAV, which was produced at Faculty of Aeronautics and Astronautics in Erciyes University, was redesigned using artificial intelligence techniques. This approach proposed for winglet redesign is based on the integration of ANFIS into the DS algorithm. For this purpose, the cant angle (c), the twist angle (t) and taper ratio (λ) of winglet are selected as input parameters; the maximum value of lift/drag ratio (Emax) is selected as the output parameter for ANFIS. For the selected input and output parameters, the optimum ANFIS parameters are determined by the DS algorithm. Then the objective function based on optimum ANFIS structure is integrated with the DS algorithm. With this integration, the input parameters for the Emax value are obtained by the DS algorithm. That is, the DS algorithm is used to obtain both the optimization of the ANFIS structure and the necessary parameters for the winglet design. Thus, the UAV was reshaped and the maximum value of lift/drag ratio was calculated based on new design.

Findings

Considerable improvements on the max E are obtained through winglet redesign on morphing UAVs with artificial intelligence techniques.

Research limitations/implications

It takes a long time to obtain the optimum Emax value by the computational fluid dynamics method.

Practical implications

Using artificial intelligence techniques saves time and reduces cost in maximizing Emax value. The simulation results showed that satisfactory Emax values were obtained, and an optimum winglet design was achieved. Thus, the presented method based on ANFIS and DS algorithm is faster and simpler.

Social implications

The application of artificial intelligence methods could be used in designing more efficient aircrafts.

Originality/value

The study provides a new and efficient method that saves time and reduces cost in redesigning UAV winglets.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 561