Search results

1 – 10 of 199
Article
Publication date: 19 March 2024

Mingke Gao, Zhenyu Zhang, Jinyuan Zhang, Shihao Tang, Han Zhang and Tao Pang

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and…

Abstract

Purpose

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and cooperative obstacle avoidance.

Design/methodology/approach

This study draws inspiration from the recurrent state-space model and recurrent models (RPM) to propose a simpler yet highly effective model called the unmanned aerial vehicles prediction model (UAVPM). The main objective is to assist in training the UAV representation model with a recurrent neural network, using the soft actor-critic algorithm.

Findings

This study proposes a generalized actor-critic framework consisting of three modules: representation, policy and value. This architecture serves as the foundation for training UAVPM. This study proposes the UAVPM, which is designed to aid in training the recurrent representation using the transition model, reward recovery model and observation recovery model. Unlike traditional approaches reliant solely on reward signals, RPM incorporates temporal information. In addition, it allows the inclusion of extra knowledge or information from virtual training environments. This study designs UAV target search and UAV cooperative obstacle avoidance tasks. The algorithm outperforms baselines in these two environments.

Originality/value

It is important to note that UAVPM does not play a role in the inference phase. This means that the representation model and policy remain independent of UAVPM. Consequently, this study can introduce additional “cheating” information from virtual training environments to guide the UAV representation without concerns about its real-world existence. By leveraging historical information more effectively, this study enhances UAVs’ decision-making abilities, thus improving the performance of both tasks at hand.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2023

Metin Uzun and Tugrul Oktay

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and flight control system (FCS) design.

Design/methodology/approach

An UAV is remanufactured in the ISTE Unmanned Aerial Vehicle Laboratory. Its wing sweep angle can vary actively during flight. FCS parameters and wing sweep angle are simultaneously designed to optimize autonomous flight performance index using a stochastic optimization method called as simultaneous perturbation stochastic approximation (SPSA). Results obtained are applied for flight simulations.

Findings

Using simultaneous design process of an UAV having actively sweep angle morphing wing and FCS design, autonomous flight performance index is maximized.

Research limitations/implications

Authorization of Directorate General of Civil Aviation in Turkey is crucial for real-time UAV flights.

Practical implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process is so beneficial for recovering UAV autonomous flight performance index.

Social implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process achieves confidence, high autonomous performance index and simple service demands of UAV operators.

Originality/value

Composing a novel approach to improve autonomous flight performance index (e.g. less settling and rise time, less overshoot meanwhile trajectory tracking) of an UAV and creating an original procedure carrying out simultaneous UAV having actively sweep angle morphing wing and FCS design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 21 July 2023

Harry Edelman, Joel Stenroos, Jorge Peña Queralta, David Hästbacka, Jani Oksanen, Tomi Westerlund and Juha Röning

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the…

Abstract

Purpose

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.

Design/methodology/approach

The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.

Findings

The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.

Research limitations/implications

As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.

Practical implications

The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.

Social implications

The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.

Originality/value

To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 18 July 2022

Douglas Aghimien, Matthew Ikuabe, John Aliu, Clinton Aigbavboa, Ayodeji Emmanuel Oke and David John Edwards

This paper aims to assess the behavioural intention of construction organisations to use unmanned aerial vehicles (UAVs) in the delivery of construction projects. Using the…

Abstract

Purpose

This paper aims to assess the behavioural intention of construction organisations to use unmanned aerial vehicles (UAVs) in the delivery of construction projects. Using the unified theory of technology adoption and use of technology (UTAUT) model, the study strives to improve project delivery by adopting beneficial digital technologies.

Design/methodology/approach

The study adopted a postpositivism philosophical stance through a quantitative research approach using a structured questionnaire administered to construction organisations in South Africa. Primary data gathered was analysed using frequency, percentage, mean item score, Mann–Whitney U-test and confirmatory factor analysis, where the latter sought to deductively confirm the variables within the UTAUT model.

Findings

Construction organisations were found to rarely use UAVs in the country and furthermore, most of the participating organisations are unsure about using UAVs for their project delivery. Factors impacting on an organisation’s intention to use UAVs were identified as social influence, performance expectancy, effort expectancy and facilitating conditions. However, factors surrounding resistance to using and perceived risk cannot be overlooked as they also proved to be significant (at p = 0.05) to the behavioural intention of organisations to use UAVs.

Practical implications

Practical guidance for industry practitioners is offered in terms of insight into the key factors that must be considered for the effective utilisation of UAVs and the realisation of concomitant benefits.

Originality/value

This study bridges the knowledge gap in extant literature by exploring the practitioner’s behavioural intention to use UAVs. As an aside, an emergent theoretical backdrop for future works on UAVs is provided (particularly in developing countries where such a study has not been previously explored).

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 25 September 2023

Rafal Perz, Kacper Wronowski, Roman Domanski and Igor Dąbrowski

Observation of the animal world is an important component of nature surveys. It provides a number of different information concerning aspects such as population sizes, migration…

Abstract

Purpose

Observation of the animal world is an important component of nature surveys. It provides a number of different information concerning aspects such as population sizes, migration directions, feeding sites and many other data. The paper below presents the results from the flights of an unmanned aerial vehicle (UAV) aimed at detecting animals in their natural environment.

Design/methodology/approach

The drone used in the research was equipped with RGB and thermal infrared (TIR) cameras. Both cameras, which were mounted on the UAV, were used to take pictures showing the concentration of animals (deer). The overview flights were carried out in the villages of Podlaskie Voivodeship: Szerokie Laki, Bialousy and Sloja. Research flights were made in Bialousy and Sloja. A concentration of deer was photographed during research flights in Sloja. A Durango unmanned platform, equipped with a thermal imaging camera and a Canon RGB camera, was used for research flights. The pictures taken during the flights were used to create orthomaps. A multicopter, equipped with a GoPro camera, was used for overview flights to film the flight locations. A flight control station was also used, consisting of a laptop with MissionPlanner software.

Findings

Analysis of the collected images has indicated that environmental, organisational and technical factors influence the quality of the information. Sophisticated observation precision is ensured by the use of high-resolution RGB and TIR cameras. A proper platform for the cameras is an UAV provided with advanced positioning systems, which makes it possible to create high-quality orthomaps of the area. When observing animals, the time of day (temperature contrast), year season (leaf ascent) or flight parameters is important.

Originality/value

The paper introduces the conclusions of the research flights, pointing out useful information for animal observation using UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 14 December 2022

Etka Gökbel, Aydin Güllü and Sezgin Ersoy

This study aims to a launchable design has been made to prevent wasted time in time-critical areas, and increase the efficiency of the unmanned aerial vehicle (UAV). In this way…

Abstract

Purpose

This study aims to a launchable design has been made to prevent wasted time in time-critical areas, and increase the efficiency of the unmanned aerial vehicle (UAV). In this way, a UAV can reach the mission height quickly.

Design/methodology/approach

A unique launchable UAV and launcher mechanism have been designed. The launchable UAV will be folded into the launcher mechanism and will automatically start flight after launch. The study includes mathematical calculations, 3D designs steps and produced UAV tests for the designed UAV. The launcher mechanism was designed in accordance with the tests for the UAV, and appropriate choices were made for the altitude and launch acceleration required by the UAV. According to the calculations, material selection and production were made.

Findings

In the tests, the climbing time was reduced by 1 s compared with the existing UAVs. With the launch, it enabled it to reach the altitude quickly and silently. In addition, because the launch energy was provided externally, it provided an advantage for the flight time.

Practical implications

A rotary-wing UAV with a launch mechanism and a fast launch was designed and prototyped. The maximum climb speed of the designed drone is 6.52 m/s. Frame arm length is 9.2 cm, propeller diameter is 15.24 cm and hover flight time is 7.2 m.

Originality/value

The UAV design can be launched. Design, calculation and experimental studies have been carried out for rapid take-off of the rotary wing UAV. The parts used in the UAV are originally produced. It is not a commercial product.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 January 2023

Demet Canpolat Tosun and Yasemin Işık

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions…

Abstract

Purpose

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions are constant. In a dynamic case, these methods used for the static environment are insufficient. The purpose of this study is to find a new method that can provide a solution to the four-rotor unmanned aerial vehicle (UAV) path planning problem in static and dynamic environments.

Design/methodology/approach

As a solution to the problem within the scope of this study, there is a new hybrid method in which the global A* algorithm and local the VFH+ algorithm are combined.

Findings

The performance of the designed algorithm was tested in different environments using the Gazebo model of a real quadrotor and the robot operating system (ROS), which is the widely used platform for robotic applications. Navigation stacks developed for mobile robots on the ROS platform were also used for the UAV, and performance benchmarks were carried out. From the proposed hybrid algorithm, remarkable results were obtained in terms of both planning and implementation time compared to ROS navigation stacks.

Originality/value

This study proposes a new hybrid approach to the path planning problem for UAVs operating in both static and dynamic environments.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 199