Search results

1 – 10 of 411

Abstract

Details

The Skills Advantage
Type: Book
ISBN: 978-1-83797-265-4

Article
Publication date: 11 August 2021

Jeremy S. Liang

This study aims to develop a synthetic knowledge repository consisted of interrelated Web Ontology Language.

Abstract

Purpose

This study aims to develop a synthetic knowledge repository consisted of interrelated Web Ontology Language.

Design/methodology/approach

The ontology composes the main framework to categorize data of product life cycle with eco-design mode (PLC-EDM) and automatically infer specialists’ knowledge for data confirmation, eventually assisting the utilizations and generation of strategies toward decision-making

Findings

(i) utilization of a novel model with ontology mode for information reuse cross the different eco-design applications; (ii) generation of a sound platform toward life cycle evaluation; and (iii) implementation of the PLC-EDM model along the product generation process.

Research limitations/implications

It cannot substitute an evaluation tool of life cycle. Certainly, this model does not predict the “target and range” and/or the depiction of the “utility module” that are basic activities in life cycle assessments as characterized through the international organization for standardization regulations.

Practical implications

As portion of this framework, a prototype Web application is presented which is applied to produce, reuse and verify knowledge of product life cycle.

Social implications

By counting upon the ontology, the information conducted by the utilization is certainly semantically represented to promote the data sharing among various participants and tools. Besides, the data can be verified against possible faults by inferring over the ontology. Hence, a feasible way to a popular topic in the domain of eco-design applications extension in the industry.

Originality/value

The goals are: to lean on rigid modeling principles; and to promote the interoperability and diffusion of the ontology toward particular utilization demands.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 July 2022

Ying Tao Chai and Ting-Kwei Wang

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection…

Abstract

Purpose

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection of surface defects requires inspectors to judge, evaluate and make decisions, which requires sufficient experience and is time-consuming and labor-intensive, and the expertise cannot be effectively preserved and transferred. In addition, the evaluation standards of different inspectors are not identical, which may lead to cause discrepancies in inspection results. Although computer vision can achieve defect recognition, there is a gap between the low-level semantics acquired by computer vision and the high-level semantics that humans understand from images. Therefore, computer vision and ontology are combined to achieve intelligent evaluation and decision-making and to bridge the above gap.

Design/methodology/approach

Combining ontology and computer vision, this paper establishes an evaluation and decision-making framework for concrete surface quality. By establishing concrete surface quality ontology model and defect identification quantification model, ontology reasoning technology is used to realize concrete surface quality evaluation and decision-making.

Findings

Computer vision can identify and quantify defects, obtain low-level image semantics, and ontology can structurally express expert knowledge in the field of defects. This proposed framework can automatically identify and quantify defects, and infer the causes, responsibility, severity and repair methods of defects. Through case analysis of various scenarios, the proposed evaluation and decision-making framework is feasible.

Originality/value

This paper establishes an evaluation and decision-making framework for concrete surface quality, so as to improve the standardization and intelligence of surface defect inspection and potentially provide reusable knowledge for inspecting concrete surface quality. The research results in this paper can be used to detect the concrete surface quality, reduce the subjectivity of evaluation and improve the inspection efficiency. In addition, the proposed framework enriches the application scenarios of ontology and computer vision, and to a certain extent bridges the gap between the image features extracted by computer vision and the information that people obtain from images.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 August 2022

Zhijiang Wu and Guofeng Ma

The purpose of this study is to automatically generate a construction schedule by extracting data from the BIM (Building Information Modeling) model and combining an ontology…

Abstract

Purpose

The purpose of this study is to automatically generate a construction schedule by extracting data from the BIM (Building Information Modeling) model and combining an ontology constraint rule and a genetic algorithm (GA).

Design/methodology/approach

This study developed a feasible multi-phase framework to generate the construction schedule automatically through extracting information from the BIM, utilizing the ontology constraint rule to demonstrate the relationships between all the components and finally using the GA to generate the construction schedule.

Findings

To present the functionality of the framework, a prototype case is adopted to show the whole procedure, and the results show that the scheme designed in this study can quickly generate the schedule and ensure that it can satisfy the requirements of logical constraints and time parameter constraints.

Practical implications

A proper utilization of conceptual framework can contribute to the automatic generation of construction schedules and significantly reduce manual errors in the Architectural, Engineering, and Construction (AEC) industry. Moreover, a scheme of BIM-based ontology and GA for construction schedule generation may reduce additional manual work and improve schedule management performance.

Social implications

The hybrid approach combines the ontology constraint rule and GA proposed in this study, and it is an effective attempt to generate the construction schedule, which provides a direct indicator for the schedule control of the project.

Originality/value

In this study, the data application process of the BIM model is divided into four modules: extraction, processing, optimization, and output. The key technologies including secondary development, ontology theory, and GA are introduced to develop a multi-phase framework for the automatic generation of the construction schedule and to realize the schedule prediction under logical constraints and duration interference.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 4 December 2023

Diego Espinosa Gispert, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance…

Abstract

Purpose

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance practices in building facilities that could enable proactive and data-driven decision-making during the Operation and Maintenance (O&M) process.

Design/methodology/approach

A scoping literature review was accomplished to establish the theoretical foundation for the current investigation. A study on developing an ontology-based AIM for predictive maintenance in building facilities was conducted. Semi-structured interviews were conducted with industry professionals to gather qualitative data for ontology-based AIM framework validation and insights.

Findings

The research findings indicate that while the development of ontology faced challenges in defining missing entities and relations in the context of predictive maintenance, insights gained from the interviews enabled the establishment of a comprehensive framework for ontology-based AIM adoption in the Facility Management (FM) sector.

Practical implications

The proposed ontology-based AIM has the potential to enable proactive and data-driven decision-making during the process, optimizing predictive maintenance practices and ultimately enhancing energy efficiency and sustainability in the building industry.

Originality/value

The research contributes to a practical guide for ontology development processes and presents a framework of an Ontology-based AIM for a Digital Twin platform.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 September 2023

Dongyuan Zhao, Zhongjun Tang and Fengxia Sun

This paper investigates the semantic association mechanisms of weak demand signals that facilitate innovative product development in terms of conceptual and temporal precedence…

Abstract

Purpose

This paper investigates the semantic association mechanisms of weak demand signals that facilitate innovative product development in terms of conceptual and temporal precedence, despite their inherent ambiguity and uncertainty.

Design/methodology/approach

To address this challenge, a domain ontology approach is proposed to construct a customer demand scenario-based framework that eliminates the blind spots in weak demand signal identification. The framework provides a basis for identifying such signals and introduces evaluation indices, such as depth, novelty and association, which are integrated to propose a three-dimensional weak signal recognition model based on domain ontology that outperforms existing research.

Findings

Empirical analysis is carried out based on customer comments of new energy vehicles on car platform such as “Auto Home” and “Bitauto”. Results demonstrate that in terms of recognition quantity, the three-dimensional weak demand signal recognition model, based on domain ontology, can accurately identify six demand weak signals. Conversely, the keyword analysis method exhibits a recognition quantity of four weak signals; in terms of recognition quality, the three-dimensional weak demand signal recognition model based on domain ontology can exclude non-demand signals such as “charging technology”, while keyword analysis methods cannot. Overall, the model proposed in this paper has higher sensitivity.

Originality/value

This paper proposes a novel method for identifying weak demand signals that considers the frequency of the signal's novelty, depth and relevance to the target demand. To verify its effectiveness, customer review data for new energy vehicles is used. The results provide a theoretical reference for formulating government policies and identifying weak demand signals for businesses.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 December 2023

Qing Fan

The purpose of this article is to contribute to the digital development and utilization of China’s intangible cultural heritage resources, research on the theft of intangible…

Abstract

Purpose

The purpose of this article is to contribute to the digital development and utilization of China’s intangible cultural heritage resources, research on the theft of intangible cultural heritage resources and knowledge integration based on linked data is proposed to promote the standardized description of intangible cultural heritage knowledge and realize the digital dissemination and development of intangible cultural heritage.

Design/methodology/approach

In this study, firstly, the knowledge organization theory and semantic Web technology are used to describe the intangible cultural heritage digital resource objects in metadata specifications. Secondly, the ontology theory and technical methods are used to build a conceptual model of the intangible cultural resources field and determine the concept sets and hierarchical relationships in this field. Finally, the semantic Web technology is used to establish semantic associations between intangible cultural heritage resource knowledge.

Findings

The study findings indicate that the knowledge organization of intangible cultural heritage resources constructed in this study provides a solution for the digital development of intangible cultural heritage in China. It also provides semantic retrieval with better knowledge granularity and helps to visualize the knowledge content of intangible cultural heritage.

Originality/value

This study summarizes and provides significant theoretical and practical value for the digital development of intangible cultural heritage and the resource description and knowledge fusion of intangible cultural heritage can help to discover the semantic relationship of intangible cultural heritage in multiple dimensions and levels.

Details

The Electronic Library , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 20 July 2023

Elaheh Hosseini, Kimiya Taghizadeh Milani and Mohammad Shaker Sabetnasab

This research aimed to visualize and analyze the co-word network and thematic clusters of the intellectual structure in the field of linked data during 1900–2021.

Abstract

Purpose

This research aimed to visualize and analyze the co-word network and thematic clusters of the intellectual structure in the field of linked data during 1900–2021.

Design/methodology/approach

This applied research employed a descriptive and analytical method, scientometric indicators, co-word techniques, and social network analysis. VOSviewer, SPSS, Python programming, and UCINet software were used for data analysis and network structure visualization.

Findings

The top ranks of the Web of Science (WOS) subject categorization belonged to various fields of computer science. Besides, the USA was the most prolific country. The keyword ontology had the highest frequency of co-occurrence. Ontology and semantic were the most frequent co-word pairs. In terms of the network structure, nine major topic clusters were identified based on co-occurrence, and 29 thematic clusters were identified based on hierarchical clustering. Comparisons between the two clustering techniques indicated that three clusters, namely semantic bioinformatics, knowledge representation, and semantic tools were in common. The most mature and mainstream thematic clusters were natural language processing techniques to boost modeling and visualization, context-aware knowledge discovery, probabilistic latent semantic analysis (PLSA), semantic tools, latent semantic indexing, web ontology language (OWL) syntax, and ontology-based deep learning.

Originality/value

This study adopted various techniques such as co-word analysis, social network analysis network structure visualization, and hierarchical clustering to represent a suitable, visual, methodical, and comprehensive perspective into linked data.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 23 August 2023

Mohamed Madani Hafidi, Meriem Djezzar, Mounir Hemam, Fatima Zahra Amara and Moufida Maimour

This paper aims to offer a comprehensive examination of the various solutions currently accessible for addressing the challenge of semantic interoperability in cyber physical…

Abstract

Purpose

This paper aims to offer a comprehensive examination of the various solutions currently accessible for addressing the challenge of semantic interoperability in cyber physical systems (CPS). CPS is a new generation of systems composed of physical assets with computation capabilities, connected with software systems in a network, exchanging data collected from the physical asset, models (physics-based, data-driven, . . .) and services (reconfiguration, monitoring, . . .). The physical asset and its software system are connected, and they exchange data to be interpreted in a certain context. The heterogeneous nature of the collected data together with different types of models rise interoperability problems. Modeling the digital space of the CPS and integrating information models that support cyber physical interoperability together are required.

Design/methodology/approach

This paper aims to identify the most relevant points in the development of semantic models and machine learning solutions to the interoperability problem, and how these solutions are implemented in CPS. The research analyzes recent papers related to the topic of semantic interoperability in Industry 4.0 (I4.0) systems.

Findings

Semantic models are key enabler technologies that provide a common understanding of data, and they can be used to solve interoperability problems in Industry by using a common vocabulary when defining these models.

Originality/value

This paper provides an overview of the different available solutions to the semantic interoperability problem in CPS.

Details

International Journal of Web Information Systems, vol. 19 no. 3/4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 4 May 2023

Yi-Yun Cheng and Yilin Xia

The purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and…

Abstract

Purpose

The purpose of this study is to provide a systematic literature review on taxonomy alignment methods in information science to explore the common research pipeline and characteristics.

Design/methodology/approach

The authors implement a five-step systematic literature review process relating to taxonomy alignment. They take on a knowledge organization system (KOS) perspective, and specifically examining the level of KOS on “taxonomies.”

Findings

They synthesize the matching dimensions of 28 taxonomy alignment studies in terms of the taxonomy input, approach and output. In the input dimension, they develop three characteristics: tree shapes, variable names and symmetry; for approach: methodology, unit of matching, comparison type and relation type; for output: the number of merged solutions and whether original taxonomies are preserved in the solutions.

Research limitations/implications

The main research implications of this study are threefold: (1) to enhance the understanding of the characteristics of a taxonomy alignment work; (2) to provide a novel categorization of taxonomy alignment approaches into natural language processing approach, logic-based approach and heuristic-based approach; (3) to provide a methodological guideline on the must-include characteristics for future taxonomy alignment research.

Originality/value

There is no existing comprehensive review on the alignment of “taxonomies”. Further, no other mapping survey research has discussed the comparison from a KOS perspective. Using a KOS lens is critical in understanding the broader picture of what other similar systems of organizations are, and enables us to define taxonomies more precisely.

Details

Journal of Documentation, vol. 79 no. 6
Type: Research Article
ISSN: 0022-0418

Keywords

1 – 10 of 411