Search results

1 – 10 of 196
Article
Publication date: 9 May 2023

Kuleni Fekadu Yadeta, Sudath C. Siriwardane and Tesfaye Alemu Mohammed

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC…

Abstract

Purpose

Reliable estimations of the extent of corrosion and time required to reach specific safety limits are crucial for assessing the reliability of aging reinforced concrete (RC) bridges. Engineers and decision-makers can use these figures to plan suitable inspection and maintenance operations.

Design/methodology/approach

Analytical, empirical and numerical approaches for estimating the service life of corroded RC structures were presented and compared. The concrete cover cracking times, which were predicted by the previously proposed analytical models, were compared with the experimentally obtained cracking times to identify the model/s for RC bridges. The shortcomings and limitations of the existing models are discussed.

Findings

The empirical models typically depend on the rate of corrosion, diameter of steel reinforcement and concrete cover depth and based on basic mathematical formula. In contrast, the analytical and numerical models contain the strength and stiffness properties of concrete as well as type of corrosion products and incorporate more complex mechanical factors. Four existing analytical models were analyzed and their performance was evaluated against existing experimental data in literature. All the considered analytical models were assumed thick-walled cylinder models. The maximum difference between observed cracking time from different test data and calculated cracking time using the developed models is 36.5%. The cracking times extend with increase in concrete cover and decrease with corrosion current density. The development of service life prediction models that considers factors such as heterogeneity of concrete, non-uniform corrosion along rebar, rust production rate and a more accurate representation of the corrosion accommodating region are some of the areas for further research.

Research limitations/implications

Outcome of this paper partially bridge the gap between theory and practice, as it is the basis to estimate the serviceability of corrosion-affected RC structures and to propose maintenance and repair strategies for the structures. For structural design and evaluation, the crack-width criterion is the greatest practical importance, and structural engineers, operators and asset managers should pay close attention to it. Additionally, repair costs for corrosion-induced serviceability failures, particularly concrete cracking and spalling, are significantly higher than those for strength failures. Therefore, to optimize the maintenance cost of RC structures, it is essential to precisely forecast the serviceability of corrosion-affected concrete structures. The lifespan of RC structures may be extended by timely repairs. This helps stake holders to manage the resources.

Practical implications

In order to improve modeling of corrosion-induced cracking, important areas for future research were identified. Heterogeneity properties of concrete, concept of porous zone (accommodation effect of pores should be quantified), actual corrosion morphology (non-uniform corrosion along the length of rebar), interaction between sustain load and corrosions were not considered in existing models. Therefore, this work suggested for further researches should consider them as input and develop models which have best prediction capacity.

Social implications

This work has positive impact on society and will not affect the quality of life. Predicting service life of structures is necessary for maintenance and repair strategy plans. Optimizing maintenance strategy is used to extend asset life, reduce asset failures, minimize repair cost, and improve health and safety for society.

Originality/value

The degree of accuracy and applicability of the existing service life prediction models used for RC were assessed by comparing the predicted cracking times with the experimentally obtained times reported in the literature. The shortcomings of the models were identified and areas where further research is required are recommended.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 May 2023

Mengmeng Li, Jian Chen, Jingtao Sun, Long Hao, Di Wu, Jianqiu Wang and Wei Ke

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in…

Abstract

Purpose

The purpose of this study is to investigate the initial corrosion behavior of pure Mg, AZ31 and AZ91 alloys in phosphate buffer solution (PBS) and to characterize the features in corrosion type and resistance of the corrosion product layer.

Design/methodology/approach

The scanning electron microscopy, equipped with energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy have been used to characterize the as-corroded samples. Besides, the Mg2+ concentration in PBSs has been determined by inductively coupled plasma atomic emission spectrum.

Findings

It has been found that pure Mg suffers pit corrosion, and AZ31 initially undergoes pit corrosion and then uniform corrosion dominates with an extended immersion duration. However, AZ91 exhibits the uniform corrosion with the highest corrosion rate among the three materials. Besides, the corrosion product layer on AZ31 has the best compactness and corrosion resistance.

Originality/value

The findings add depth in understanding the corrosion of pure Mg and its alloys in PBS and also have guiding significance in exploring the effects by alloyed elements to develop new biomaterials with better performance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 April 2024

Kryzelle M. Atienza, Apollo E. Malabanan, Ariel Miguel M. Aragoncillo, Carmina B. Borja, Marish S. Madlangbayan and Emel Ken D. Benito

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that…

Abstract

Purpose

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that induce general corrosion. This research gap was addressed by performing a combined numerical and statistical analysis on RC beams, subjected to natural corrosion, to achieve a much better forecast.

Design/methodology/approach

Data of 42 naturally corroded beams were collected from the literature and analyzed numerically. Four constitutive models and their combinations were considered: the elastic-semi-plastic and elastic-perfectly-plastic models for steel, and two tensile models for concrete with and without the post-cracking stresses. Meanwhile, Popovics’ model was used to describe the behavior of concrete under compression. Corrosion coefficients were developed as functions of corrosion degree and beam parameters through linear regression analysis to fit the theoretical moment capacities with test data. The performance of the coefficients derived from different combinations of constitutive laws was then compared and validated.

Findings

The results showed that the highest accuracy (R2 = 0.90) was achieved when the tensile response of concrete was modeled without the residual stresses after cracking and the steel was analyzed as an elastic-perfectly-plastic material. The proposed procedure and regression model also showed reasonable agreement with experimental data, even performing better than the current models derived from accelerated tests and traditional procedures.

Originality/value

This study presents a simple but reliable approach for quantifying the capacity of RC beams under more realistic conditions than previously reported. This method is simple and requires only a few variables to be employed. Civil engineers can use it to obtain a quick and rough estimate of the structural condition of corroding RC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 October 2023

Minakshi Koundal, Ajay Kumar Singh and Chhaya Sharma

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Abstract

Purpose

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Design/methodology/approach

The mild steel 1010 coupon was considered for the current study. Weight loss and the electrochemical methods were used to evaluate the inhibitory effects of neodymium chloride (NdCl3) and NdTar on mild steel in NaCl solution. Scanning electron microscopy, energy-dispersive X-ray analysis and attenuated total reflectance-Fourier transform infrared spectroscopy measurements were carried out to study the morphology and composition of the film, nature of deposits and corrosion products formed in test media on the corroded steel, with the objective of further analyzing the observed behavior of the two inhibitors.

Findings

Of the two, NdTar performs better than NdCl3 because it shields mild steel surfaces for longer. According to the results, when NdCl3 is present in a corrosive solution, the protective film only comprises Nd/Fe oxide/hydroxide/carbonate. However, when neodymium is coupled with the tartrate group (an organic group) and then added to the NaCl solution, the inhibitor film comprises both bimetallic complexes (Fe-Tar-Nd) and metal oxide/hydroxide/carbonate, which results in a more compact film and has higher inhibition efficiency.

Originality/value

This study evaluated the combined effects of inorganic and organic inhibitors with those of an inorganic inhibitor used alone for mild steel in NaCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 April 2023

Yongxiong Li, Junying Hu and Xiankang Zhong

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Abstract

Purpose

This study aims to shed light on the corrosion behavior of X80 steel when sulfate-reducing bacteria (SRB) and permeating hydrogen interact.

Design/methodology/approach

In this study, electrochemical tests were conducted between 25 and 55 °C, and the surface morphology of the specimen was observed using scanning electron microscopy and three-dimensional photos. The composition of the oxide film was characterized by X-ray photoelectron spectroscopy (XPS).

Findings

Under the condition of 6 MPa simulated natural gas (15% H2), the content of S-containing compounds (FeS and FeSO4) in the corrosion products on the surface of the specimen decreases from 60.8% to 54.4%. This finding indicates that hydrogen permeation inhibits the metabolic processes of SRB in this environment. By comparing the hydrogen-uncharged specimen, it was found that under the condition of 6 MPa simulated natural gas (15% H2) hydrogen charging, the uniform corrosion on the X80 surface was weakened, and the protection of the oxide film on the specimen surface in this environment was better than that without hydrogen charging.

Originality/value

To the best of the authors’ knowledge, most of these existing studies have focused on the effect of hydrogen on the mechanical properties of materials and very little is known about corrosion behavior in the hydrogen environment. In this study, a self-designed small gas phase hydrogen charging device was used to study the X80 surface corrosion behavior in the environment of the H2-doped natural gas pipeline.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 December 2023

Yingying Li, Lanlan Liu, Jun Wang, Song Xu, Hui Su, Yi Xie and Tangqing Wu

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Abstract

Purpose

The purpose of this paper is to study the corrosion behavior of Q235 steel in saturated acidic red and yellow soils.

Design/methodology/approach

The corrosion behavior of Q235 steel in saturated red and yellow soils was compared by weight-loss, SEM/EDS, 3D ultra-depth microscopy and electrochemical measurements.

Findings

Rp of the steel gradually increases and icorr gradually decreases in both the red and yellow soils with time. The Rp of the steel in the red soil is lower, but its icorr is higher than that in the yellow soil. The uniform corrosion rate, diameter and density of the corrosion pit on the steel surface in the red soil are greater than those in the yellow soil. Lower pH, higher contents of corrosive anions and high-valence Fe oxides in the red soil are responsible for its higher corrosion rates and local corrosion susceptibility.

Originality/value

This paper investigates the difference in corrosion behavior of carbon steel in saturated acidic red and yellow soils, which can help to understand the mechanism of soil corrosion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 July 2023

Li Fan and Biao Nie

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Abstract

Purpose

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Design/methodology/approach

Five test specimens sourced from cold-formed thin-walled C-shaped steel that have been in service for three years in actual industrial environments were subjected to surface characteristic test. The surface characteristic of corroded hot-rolled steel and cold-formed steel were compared and analyzed. The relationship between the surface morphology parameters and the average corrosion depth was established.

Findings

The evolution law of the surface morphology of corroded cold-formed thin-walled steel and corroded hot-rolled steel was similar. The frequency histogram of corrosion depth was mainly single peak with high values on the middle and low values on both sides. The corrosion depth conformed to the normal distribution. The roughness average height and the root mean square of surface height gradually increased linearly with increasing the average corrosion depth.

Originality/value

The reduction in the standard deviation of corrosion depth, the maximum corrosion depth, the roughness average height and the root mean square of surface height of the cold-formed thin-walled steel was smaller than those of the hot-rolled steel.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 September 2023

Jiabo Chen, Xiaokai Guo, Hao Liu, Xuantong Lv, Shichuan Fan, Liankui Wu, Fahe Cao and Qingqing Sun

This study aims to discuss the influences of surface severe plastic deformation (S2PD) on the electrochemical corrosion, pitting corrosion, intergranular corrosion, stress…

Abstract

Purpose

This study aims to discuss the influences of surface severe plastic deformation (S2PD) on the electrochemical corrosion, pitting corrosion, intergranular corrosion, stress corrosion cracking of aluminum (Al) alloys and attempt to correlate the microstructural/compositional changes with the performances.

Design/methodology/approach

This study provides a novel gradient design of structure/composition caused by S2PD for the purpose of enhancing Al alloys’ corrosion resistance.

Findings

S2PD has a significant effect on corrosion behavior of Al alloys through tuning the grain size, residual stress, composition, grain boundary phase and second phase particle distribution.

Originality/value

Although Al alloys are known to form a protective Al2O3 film, corrosion is a major challenge for the longevity of Al structures across numerous industries, especially for the infrastructures made of high-strength Al alloys. Traditional strategies of improving corrosion resistance of Al alloys heavily relied on alloying and coatings. In this review, gradient design of structure/composition caused by S2PD provides a novel strategy for corrosion protection of Al alloys, especially in the enhancement of localized corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 June 2023

Yesen Zhu, Cheng-Qing Gu, Jinliang Wang, Xiaohui Xi and Zhenbo Qin

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Abstract

Purpose

The purpose of this paper is to study the effect of chromium content on the microstructure and corrosion resistance of Ni-Cr coating.

Design/methodology/approach

Ni-Cr coating was prepared by pulse current electrodeposition with trivalent chromium. On the basis of studying effect of electroplating parameters on composition and morphology, Ni-Cr alloy coatings with various chromium contents were obtained. The microstructure was characterized by scanning electron microscopy, X-ray diffractometer and transmission electron microscopy. Corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques.

Findings

Electrodeposited chromium was solidly dissolved in nickel and refined the grain of the coating. With the increase of Cr content, the corrosion resistance of Ni-Cr coating was enhanced, which is due to the formation of continuous nickel hydroxide and compact chromium oxide passive films.

Originality/value

Ni-Cr alloy coating without penetration crack was prepared in trivalent chromium electrolyte, and the mechanism of its excellent corrosion resistance was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 196