Search results

1 – 10 of 355
Article
Publication date: 5 October 2021

Umair Ali, Wasif Muhammad, Muhammad Jehanzed Irshad and Sajjad Manzoor

Self-localization of an underwater robot using global positioning sensor and other radio positioning systems is not possible, as an alternative onboard sensor-based self-location…

Abstract

Purpose

Self-localization of an underwater robot using global positioning sensor and other radio positioning systems is not possible, as an alternative onboard sensor-based self-location estimation provides another possible solution. However, the dynamic and unstructured nature of the sea environment and highly noise effected sensory information makes the underwater robot self-localization a challenging research topic. The state-of-art multi-sensor fusion algorithms are deficient in dealing of multi-sensor data, e.g. Kalman filter cannot deal with non-Gaussian noise, while parametric filter such as Monte Carlo localization has high computational cost. An optimal fusion policy with low computational cost is an important research question for underwater robot localization.

Design/methodology/approach

In this paper, the authors proposed a novel predictive coding-biased competition/divisive input modulation (PC/BC-DIM) neural network-based multi-sensor fusion approach, which has the capability to fuse and approximate noisy sensory information in an optimal way.

Findings

Results of low mean localization error (i.e. 1.2704 m) and computation cost (i.e. 2.2 ms) show that the proposed method performs better than existing previous techniques in such dynamic and unstructured environments.

Originality/value

To the best of the authors’ knowledge, this work provides a novel multisensory fusion approach to overcome the existing problems of non-Gaussian noise removal, higher self-localization estimation accuracy and reduced computational cost.

Details

Sensor Review, vol. 41 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 November 2021

Hanisah Mohd Zali, Mohd Khairil Adzhar Mahmood, Idnin Pasya, Miyuki Hirose and Nurulazlina Ramli

Utilization of electromagnetic wave (EMW) sensors in an underwater environment has the potential to increase the data rate compared to acoustic-based sensors because of the…

Abstract

Purpose

Utilization of electromagnetic wave (EMW) sensors in an underwater environment has the potential to increase the data rate compared to acoustic-based sensors because of the ability to use larger signal bandwidth. Nevertheless, EMW signals has the drawback of large signal attenuation in underwater, attributed to the high relative permittivity and conductivity of water compared to the atmosphere, hence employment of wide signal bandwidth is necessary to balance the data rate-attenuation trade-off. The purpose of this paper is to analyze the characteristics of both narrowband and wideband EMW signal propagation underwater and devise a path loss model for both cases.

Design/methodology/approach

Path loss measurement was conducted using a point-to-point configuration in a laboratory water tank while transmitting narrowband and wideband signals between a pair of wideband underwater antennas. The wideband underwater antennas use buffer-layer structures as the impedance matching layer to optimize the antenna performance when operating underwater. The path loss for narrowband signal was modeled using a multi-layer propagation equation in lossy medium considering losses at the medium boundaries. For the case of the wideband signal, a modified version of the model introducing power integration over bandwidth is adopted. These models were formulated through numerical simulations and verified by measurements.

Findings

The measured narrowband path loss marked an 80 dB attenuation using 800 MHz at 2 m distance. The proposed narrowband model agrees well with the measurements, with approximately 3 dB modeling error. Utilization of the proposed wideband path loss model resulted in a reduction of the gradient of the path loss curve compared to the case of the narrowband signal. The measured wideband path loss at 2 m distance underwater was approximately −65 dB, which has been shown to enable a working signal-to-noise ratio of 15 dB. This proves the potential of realizing high data rate transmission using the wideband signal.

Originality/value

The paper proposed a wideband propagation model for an underwater EMW sensor network, using power integration over bandwidth. The effectiveness of using wideband EMW signals in reducing path loss is highlighted, which is seldom discussed in the literature. This result will be of useful reference for using wideband signals in designing a high data rate transmission system in underwater wireless sensor networks, for example, in link budget, performance estimation and parameter design of suitable transmission scheme.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 December 2017

Ying Guo, Qinghe Han, Jinxin Wang and Xu Yu

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due…

Abstract

Purpose

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems.

Design/methodology/approach

This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distance and takes them into OITs localization algorithm design. Then, it studies the movement regulation of underwater nodes in the action of ocean current, and designs an Energy-aware Localization Algorithm (ELA) for OITs.

Findings

Proposing an ELA. ELA takes the ship with accurate position information as a beacon to solve the problem of beacon deployment. ELA does not need to calculate the information transmission distance which solves the problem of distance estimation. It takes underwater node movement regulation into computation to solve the problem of node mobility.

Originality value

This paper provides an ELA based on the relationship between propagation energy attenuation and node distance for OITs. It solves the problem of localization in dynamic underwater networks.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 March 2015

Poonam Prasad

This paper aims to review existing wireless sensor network (WSN) setups in various domains, focusing on affordable WSN so that it can be effectively utilised in solving the…

1227

Abstract

Purpose

This paper aims to review existing wireless sensor network (WSN) setups in various domains, focusing on affordable WSN so that it can be effectively utilised in solving the environmental problems. WSN is being explored in many applications such as home security, smart spaces, environmental monitoring, battlefield surveillance and target tracking. WSN consists of a number of tiny, low-powered, energy-constrained sensor nodes with sensing, data processing and wireless communication components. Creating a WSN setup will make the monitoring system effective and in future, it will give a roadmap for solving some common societal problems.

Design/methodology/approach

Various research papers in the area of WSN have been reviewed on the basis of technologies and application on different fields.

Findings

WSN was found to be the most effective solution in areas which are less explored due their hazardous nature and are difficult to reach.

Originality/value

This review is based on research papers available and a recent trend in the area of WSN has been explored.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 January 2017

Chirihane Gherbi, Zibouda Aliouat and Mohamed Benmohammed

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches…

655

Abstract

Purpose

In particular, this paper aims to systematically analyze a few prominent wireless sensor network (WSN) clustering routing protocols and compare these different approaches according to the taxonomy and several significant metrics.

Design/methodology/approach

In this paper, the authors have summarized recent research results on data routing in sensor networks and classified the approaches into four main categories, namely, data-centric, hierarchical, location-based and quality of service (QoS)-aware, and the authors have discussed the effect of node placement strategies on the operation and performance of WSNs.

Originality/value

Performance-controlled planned networks, where placement and routing must be intertwined and everything from delays to throughput to energy requirements is well-defined and relevant, is an interesting subject of current and future research. Real-time, deadline guarantees and their relationship with routing, mac-layer, duty-cycles and other protocol stack issues are interesting issues that would benefit from further research.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Abstract

Details

Library Hi Tech News, vol. 36 no. 5
Type: Research Article
ISSN: 0741-9058

Article
Publication date: 19 June 2019

Shujing Zhang, Manyu Zhang, Yujie Cui, Xingyue Liu, Bo He and Jiaxing Chen

This paper aims to propose a fast machine compression scheme, which can solve the problem of low-bandwidth transmission for underwater images.

Abstract

Purpose

This paper aims to propose a fast machine compression scheme, which can solve the problem of low-bandwidth transmission for underwater images.

Design/methodology/approach

This fast machine compression scheme mainly consists of three stages. Firstly, raw images are fed into the image pre-processing module, which is specially designed for underwater color images. Secondly, a divide-and-conquer (D&C) image compression framework is developed to divide the problem of image compression into a manageable size. And extreme learning machine (ELM) is introduced to substitute for principal component analysis (PCA), which is a traditional transform-based lossy compression algorithm. The execution time of ELM is very short, thus the authors can compress the images at a much faster speed. Finally, underwater color images can be recovered from the compressed images.

Findings

Experiment results show that the proposed scheme can not only compress the images at a much faster speed but also maintain the acceptable perceptual quality of reconstructed images.

Originality/value

This paper proposes a fast machine compression scheme, which combines the traditional PCA compression algorithm with the ELM algorithm. Moreover, a pre-processing module and a D&C image compression framework are specially designed for underwater images.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 November 2022

Mengran Liu, Qiang Zeng, Zeming Jian, Lei Nie and Jun Tu

Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater

Abstract

Purpose

Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater targets. This paper proposes a new underwater Hanbury Brown-Twiss (HBT) interference passive localization method. This study aims to achieve precise location of the underwater acoustic targets.

Design/methodology/approach

The principle of HBT interference with ultrasensitive detection characteristics in optical measurements was introduced in the field of hydroacoustics. The coherence of the underwater target signal was analyzed using the HBT interference measurement principle, and the corresponding relationship between the signal coherence and target position was obtained. Consequently, an HBT interference localization model was established, and its validity was verified through simulations and experiments.

Findings

The effects of different array structures on the localization performance were obtained by simulation analysis, and the simulations confirmed that the HBT method exhibited a higher positioning accuracy than conventional beamforming. In addition, the experimental analysis demonstrated the excellent positioning performance of the HBT method, which verified the feasibility of the proposed method.

Originality/value

This study provides a new method for the passive localization of underwater targets, which may be widely used in the field of oceanic explorations.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 October 2023

Radha Subramanyam, Y. Adline Jancy and P. Nagabushanam

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data…

Abstract

Purpose

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in wireless sensor network (WSN) and Internet of Things (IoT) applications. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes. Game theory optimization for distributed may increase the network performance. The purpose of this study is to survey the various operations that can be carried out using distributive and adaptive MAC protocol. Hill climbing distributed MAC does not need a central coordination system and location-based transmission with neighbor awareness reduces transmission power.

Design/methodology/approach

Distributed MAC in wireless networks is used to address the challenges like network lifetime, reduced energy consumption and for improving delay performance. In this paper, a survey is made on various cooperative communications in MAC protocols, optimization techniques used to improve MAC performance in various applications and mathematical approaches involved in game theory optimization for MAC protocol.

Findings

Spatial reuse of channel improved by 3%–29%, and multichannel improves throughput by 8% using distributed MAC protocol. Nash equilibrium is found to perform well, which focuses on energy utility in the network by individual players. Fuzzy logic improves channel selection by 17% and secondary users’ involvement by 8%. Cross-layer approach in MAC layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in WSN and IoT applications. Cross-layer and cooperative communication give energy savings of 27% and reduces hop distance by 4.7%. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes.

Research limitations/implications

Other optimization techniques can be applied for WSN to analyze the performance.

Practical implications

Game theory optimization for distributed may increase the network performance. Optimal cuckoo search improves throughput by 90% and reduces delay by 91%. Stochastic approaches detect 80% attacks even in 90% malicious nodes.

Social implications

Channel allocations in centralized or static manner must be based on traffic demands whether dynamic traffic or fluctuated traffic. Usage of multimedia devices also increased which in turn increased the demand for high throughput. Cochannel interference keep on changing or mitigations occur which can be handled by proper resource allocations. Network survival is by efficient usage of valid patis in the network by avoiding transmission failures and time slots’ effective usage.

Originality/value

Literature survey is carried out to find the methods which give better performance.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 4 August 2020

Aaqil Somauroo and Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments…

1238

Abstract

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

1 – 10 of 355