Search results

11 – 20 of over 1000
Content available
Article
Publication date: 1 August 2003

102

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 4
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 August 2005

53

Abstract

Details

Industrial Robot: An International Journal, vol. 32 no. 4
Type: Research Article
ISSN: 0143-991X

Content available
Article
Publication date: 1 October 2005

118

Abstract

Details

Industrial Robot: An International Journal, vol. 32 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 October 2003

64

Abstract

Details

Industrial Robot: An International Journal, vol. 30 no. 5
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 5 October 2015

Oduetse Matsebe, Khumbulani Mpofu, John Terhile Agee and Sesan Peter Ayodeji

The purpose of this paper is to present a method to extract corner features for map building purposes in man-made structured underwater environments using the sliding-window…

Abstract

Purpose

The purpose of this paper is to present a method to extract corner features for map building purposes in man-made structured underwater environments using the sliding-window technique.

Design/methodology/approach

The sliding-window technique is used to extract corner features, and Mechanically Scanned Imaging Sonar (MSIS) is used to scan the environment for map building purposes. The tests were performed with real data collected in a swimming pool.

Findings

The change in application environment and the use of MSIS present some important differences, which must be taken into account when dealing with acoustic data. These include motion-induced distortions, continuous data flow, low scan frequency and high noise levels. Only part of the data stored in each scan sector is important for feature extraction; therefore, a segmentation process is necessary to extract more significant information. To deal with continuous flow of data, data must be separated into 360° scan sectors. Although the vehicle is assumed to be static, there is a drift in both its rotational and translational motions because of currents in the water; these drifts induce distortions in acoustic images. Therefore, the bearing information and the current vehicle pose corresponding to the selected scan-lines must be stored and used to compensate for motion-induced distortions in the acoustic images. As the data received is very noisy, an averaging filter should be applied to achieve an even distribution of data points, although this is partly achieved through the segmentation process. On the selected sliding window, all the point pairs must pass the distance and angle tests before a corner can be initialised. This minimises mapping of outlier data points but can make the algorithm computationally expensive if the selected window is too wide. The results show the viability of this procedure under very noisy data. The technique has been applied to 50 data sets/scans sectors with a success rate of 83 per cent.

Research limitations/implications

MSIS gives very noisy data. There are limited sensorial modes for underwater applications.

Practical implications

The extraction of corner features in structured man-made underwater environments opens the door for SLAM systems to a wide range of applications and environments.

Originality/value

A method to extract corner features for map building purposes in man-made structured underwater environments is presented using the sliding-window technique.

Details

Journal of Engineering, Design and Technology, vol. 13 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 December 2019

Huijun Wu

The purpose of this paper is to research the hardened properties of non-dispersible concrete in seawater environment, especially in seawater environment.

Abstract

Purpose

The purpose of this paper is to research the hardened properties of non-dispersible concrete in seawater environment, especially in seawater environment.

Design/methodology/approach

The main approach is according to the experiment.

Findings

The findings of this paper are: first, because of the washing effect of water, the strength of underwater non-dispersible concrete is lower than that of terrestrial concrete. Second, the strength of non-dispersible underwater concrete with silica fume increases remarkably at different ages. Third, underwater non-dispersible concrete does not produce new products when it is formed and cured in seawater.

Originality/value

In this paper, underwater non-dispersible concrete is formed and maintained on land, freshwater and seawater by underwater pouring method. The working performance, mechanical properties and durability of underwater non-dispersible concrete mixtures after hardening are tested.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 January 2016

Rui Zhang, Wendong Zhang, Changde He, Jinlong Song, Linfeng Mu, Juan Cui, Yongmei Zhang and Chenyang Xue

The purpose of this paper was to develop a novel capacitive micromachined ultrasonic transducer (CMUT) reception and transmission linear array for underwater imaging at 400 kHz…

Abstract

Purpose

The purpose of this paper was to develop a novel capacitive micromachined ultrasonic transducer (CMUT) reception and transmission linear array for underwater imaging at 400 kHz. Compared with traditional CMUTs, the developed transducer array offers higher electromechanical coupling coefficient and higher directivity performance.

Design/methodology/approach

The configuration of the newly developed CMUT reception and transmission array was determined by the authors’ previous research into new element structures with patterned top electrodes and into directivity simulation analysis. Using the Si-Silicon on insulator (Si-SOI) bonding technique and the principle of acoustic impedance matching, the CMUT array was fabricated and packaged. In addition, underwater imaging system design and testing based on the packaged CMUT 1 × 16 array were completed.

Findings

The simulation results showed that the optimized CMUT array configuration was selected. Furthermore, the designed configuration of the CMUT 1 × 16 linear array was good enough to guarantee high angular resolution. The underwater experiments were conducted to demonstrate that this CMUT array can be of great benefit in imaging applications.

Practical implications

Based on our research, the CMUT linear array has good directivity and good impedance matching with water and can be used for obstacle avoidance, distance measurement and imaging underwater.

Originality/value

This research provides a basis for CMUT directivity theory and array design. CMUT array presented in this paper has good directivity and has been applied in the underwater imaging, resulting in a huge market potential in underwater detection systems.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 January 2022

Omkar Lakshmi Jagan B., Koteswara Rao S. and Kavitha Lakshmi M.

This paper aims to target tracking in the marine environment is typically obtained by considering the measurement parameters like frequency, elevation and bearing. Marine…

Abstract

Purpose

This paper aims to target tracking in the marine environment is typically obtained by considering the measurement parameters like frequency, elevation and bearing. Marine environmental surveillance provides critical information and assistance for the exploitation and maintenance of marine resources.

Design/methodology/approach

With the use of intelligent sensor techniques like Hull-mounted and towed array sensors, convenient, precise and dependable three-dimensional (3D) underwater target tracking is introduced.

Findings

This research investigates a method to develop a reliable Unscented Kalman Filter (UKF) algorithm for enhanced underwater target tracking in a 3D scenario by using bearing, frequency and elevation measurements. In applications for underwater target tracking, uncertainty and inaccuracies are typically described by using Gaussian additive noise.

Originality/value

The proposed UKF algorithm is tested and analyzed using 100 Monte Carlo simulations with the Gaussian generated noise.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 8 December 2017

Ying Guo, Qinghe Han, Jinxin Wang and Xu Yu

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due…

Abstract

Purpose

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems.

Design/methodology/approach

This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distance and takes them into OITs localization algorithm design. Then, it studies the movement regulation of underwater nodes in the action of ocean current, and designs an Energy-aware Localization Algorithm (ELA) for OITs.

Findings

Proposing an ELA. ELA takes the ship with accurate position information as a beacon to solve the problem of beacon deployment. ELA does not need to calculate the information transmission distance which solves the problem of distance estimation. It takes underwater node movement regulation into computation to solve the problem of node mobility.

Originality value

This paper provides an ELA based on the relationship between propagation energy attenuation and node distance for OITs. It solves the problem of localization in dynamic underwater networks.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 June 2019

Rui Zhang, Lei Zhao, Dan Xie, Jinlong Song, Wendong Zhang, Lihu Pan and Yanhua Zhang

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT…

183

Abstract

Purpose

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT, a matched integrated adjustment circuit was designed through analyzing processing methods of transducer’s weak echo signal.

Design/methodology/approach

Based on the analysis of CMUT array structure and work principle, the CMUT units are designed and the dynamic performance analysis of SIMULINK is given according to the demand of underwater detecting. A transceiver isolation circuit is used to make transmission mode and receiving mode separate. A detection circuit is designed based on the transimpedance amplifier to achieve extraction of high-frequency and weak signal.

Findings

Through experimentation, the effectiveness of the CMUT performance simulation and the transceiver integrated adjustment circuit were verified. In addition, the test showed that CMUT with 400 kHz frequency has wider bandwidth and better dynamic characteristics than other similar transducers.

Originality/value

This paper provides a theoretical basis and design reference for the development and application of CMUT technology.

11 – 20 of over 1000