Search results

1 – 10 of 52
Article
Publication date: 23 June 2023

Mohit Goswami, Yash Daultani and M. Ramkumar

This paper analytically models and numerically investigates two operating levers, namely optimization of product price and optimization of product quality in the context of a…

Abstract

Purpose

This paper analytically models and numerically investigates two operating levers, namely optimization of product price and optimization of product quality in the context of a manufacturer that sells the products directly in the marketplace. The study attempts to identify how optimizing product quality and product price can fulfill a manufacturer's economic aims such as maximization of the manufacturer's profit and market demand. Anchored to the extant literature, the demand is modeled as a parametric joint multiplicative function of price and quality. Further, price is modeled as a function of product quality.

Design/methodology/approach

First, the authors evolve the analytical expression for the manufacturer's profit. Thereafter, following the mathematical principles of unconstrained optimization, the authors arrive at the conditions for optimal product quality and product price. The authors further perform numerical experiments to understand the behavior of economic dimensions such as profit and demand with respect to sensitivities associated with cost, quality and price.

Findings

The authors find that under product quality optimization, the optimal product quality is a unique solution in that a highest possible theoretical manufacturer's profit is obtained. However, in the case of product price optimization, the optimal product price is non-unique and is a function of product quality. The authors further find that in the context of functional quality-level expectations, product quality optimization as an operating lever gives a better dividend. However, in the case of higher product quality expectations, product price optimization performs better than product quality optimization. Further, several novel findings are also obtained from numerical experimentations.

Originality/value

The findings of the authors' study have implications for types of industries characterized by relatively low as well as relatively high competitive intensity. Further, as opposed to several extant studies that have often carried out joint optimization of quality and price, the authors' study is one of the first to study the impact of product price and product quality on the manufacturer's economic objective in a disparate and focused manner, thus capturing individual effects.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 29 May 2023

Christopher Amaral, Ceren Kolsarici and Mikhail Nediak

The purpose of this study is to understand the profit implications of analytics-driven centralized discriminatory pricing at the headquarter level compared with sales force price…

1490

Abstract

Purpose

The purpose of this study is to understand the profit implications of analytics-driven centralized discriminatory pricing at the headquarter level compared with sales force price delegation in the purchase of an aftermarket good through an indirect retail channel with symmetric information.

Design/methodology/approach

Using individual-level loan application and approval data from a North American financial institution and segment-level customer risk as the price discrimination criterion for the firm, the authors develop a three-stage model that accounts for the salesperson’s price decision within the limits of the latitude provided by the firm; the firm’s decision to approve or not approve a sales application; and the customer’s decision to accept or reject a sales offer conditional on the firm’s approval. Next, the authors compare the profitability of this sales force price delegation model to that of a segment-level centralized pricing model where agent incentives and consumer prices are simultaneously optimized using a quasi-Newton nonlinear optimization algorithm (i.e. Broyden–Fletcher–Goldfarb–Shanno algorithm).

Findings

The results suggest that implementation of analytics-driven centralized discriminatory pricing and optimal sales force incentives leads to double-digit lifts in firm profits. Moreover, the authors find that the high-risk customer segment is less price-sensitive and firms, upon leveraging this segment’s willingness to pay, not only improve their bottom-line but also allow these marginalized customers with traditionally low approval rates access to loans. This points out the important customer welfare implications of the findings.

Originality/value

Substantively, to the best of the authors’ knowledge, this paper is the first to empirically investigate the profitability of analytics-driven segment-level (i.e. discriminatory) centralized pricing compared with sales force price delegation in indirect retail channels (i.e. where agents are external to the firm and have access to competitor products), taking into account the decisions of the three key stakeholders of the process, namely, the consumer, the salesperson and the firm and simultaneously optimizing sales commission and centralized consumer price.

Details

European Journal of Marketing, vol. 57 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 6 February 2024

Miguel Núñez-Merino, Juan Manuel Maqueira-Marín, José Moyano-Fuentes and Carlos Alberto Castaño-Moraga

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational…

Abstract

Purpose

The purpose of this paper is to explore and disseminate knowledge about quantum-inspired computing technology's potential to solve complex challenges faced by the operational agility capability in Industry 4.0 manufacturing and logistics operations.

Design/methodology/approach

A multi-case study approach is used to determine the impact of quantum-inspired computing technology in manufacturing and logistics processes from the supplier perspective. A literature review provides the basis for a framework to identify a set of flexibility and agility operational capabilities enabled by Industry 4.0 Information and Digital Technologies. The use cases are analyzed in depth, first individually and then jointly.

Findings

Study results suggest that quantum-inspired computing technology has the potential to harness and boost companies' operational flexibility to enhance operational agility in manufacturing and logistics operations management, particularly in the Industry 4.0 context. An exploratory model is proposed to explain the relationships between quantum-inspired computing technology and the deployment of operational agility capabilities.

Originality/value

This is study explores the use of quantum-inspired computing technology in Industry 4.0 operations management and contributes to understanding its potential to enable operational agility capability in manufacturing and logistics operations.

Details

International Journal of Physical Distribution & Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2022

Pasala Gopi

The purpose of this study is to analyze direct current (DC) drive stability, including parameter uncertainty and perturbation in the feedback loop, by computing disk margins.

Abstract

Purpose

The purpose of this study is to analyze direct current (DC) drive stability, including parameter uncertainty and perturbation in the feedback loop, by computing disk margins.

Design/methodology/approach

Although the closed-loop stability analysis of a DC drive has been presented well in the referenced papers, the effect of parameter uncertainty and perturbation in the feedback loop has not yet been discussed well. In this study, the conventional and disk-based stability margins were measured and compared for the nominal parameters of the DC drive. Subsequently, the smallest disk-based margins that destabilize the feedback loop for a given perturbation are computed and compared with normal disk margins.

Findings

The disk-based margin offered by the DC drive controlled by the JAYA-PID controller is disk gain margins (DGM) = 8.41 dB and disk phase margin (DPM) = 48.410 and the smallest disk-based margin offered is DGM = 1.51 dB and DPM = 9.950. In addition, the effect of the modeled uncertainty on the disk stability margins was analyzed, and it was observed that the maximum allowable parameter uncertainty with the JAYA controller was 73% of its nominal parameters. The simulation results were validated using an experimental testbed.

Originality/value

This research work is not published anywhere else.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2024

Ting Zhou, Yingjie Wei, Jian Niu and Yuxin Jie

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a…

Abstract

Purpose

Metaheuristic algorithms based on biology, evolutionary theory and physical principles, have been widely developed for complex global optimization. This paper aims to present a new hybrid optimization algorithm that combines the characteristics of biogeography-based optimization (BBO), invasive weed optimization (IWO) and genetic algorithms (GAs).

Design/methodology/approach

The significant difference between the new algorithm and original optimizers is a periodic selection scheme for offspring. The selection criterion is a function of cyclic discharge and the fitness of populations. It differs from traditional optimization methods where the elite always gains advantages. With this method, fitter populations may still be rejected, while poorer ones might be likely retained. The selection scheme is applied to help escape from local optima and maintain solution diversity.

Findings

The efficiency of the proposed method is tested on 13 high-dimensional, nonlinear benchmark functions and a homogenous slope stability problem. The results of the benchmark function show that the new method performs well in terms of accuracy and solution diversity. The algorithm converges with a magnitude of 10-4, compared to 102 in BBO and 10-2 in IWO. In the slope stability problem, the safety factor acquired by the analogy of slope erosion (ASE) is closer to the recommended value.

Originality/value

This paper introduces a periodic selection strategy and constructs a hybrid optimizer, which enhances the global exploration capacity of metaheuristic algorithms.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 September 2023

Xiaohan Xu, Xudong Huang, Ke Zhang and Ming Zhou

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method…

Abstract

Purpose

In general, the existing compressor design methods require abundant knowledge and inspiration. The purpose of this study is to identify an intellectual design optimization method that enables a machine to learn how to design it.

Design/methodology/approach

The airfoil design process was solved using the reinforcement learning (RL) method. An intellectual method based on a modified deep deterministic policy gradient (DDPG) algorithm was implemented. The new method was applied to agents to learn the design policy under dynamic constraints. The agents explored the design space with the help of a surrogate model and airfoil parameterization.

Findings

The agents successfully learned to design the airfoils. The loss coefficients of a controlled diffusion airfoil improved by 1.25% and 3.23% in the two- and four-dimensional design spaces, respectively. The agents successfully learned to design under various constraints. Additionally, the modified DDPG method was compared with a genetic algorithm optimizer, verifying that the former was one to two orders of magnitude faster in policy searching. The NACA65 airfoil was redesigned to verify the generalization.

Originality/value

It is feasible to consider the compressor design as an RL problem. Trained agents can determine and record the design policy and adapt it to different initiations and dynamic constraints. More intelligence is demonstrated than when traditional optimization methods are used. This methodology represents a new, small step toward the intelligent design of compressors.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 February 2024

Abdallah Chanane and Hamza Houassine

Although, numerous optimization algorithms have been devoted to construct an electrical ladder network model (ELNM), they suffer from some frail points such as insufficient…

Abstract

Purpose

Although, numerous optimization algorithms have been devoted to construct an electrical ladder network model (ELNM), they suffer from some frail points such as insufficient accuracy as well as the majority of them are unconstrained, which result in optimal solutions that violate certain security operational constraints. For this purpose, this paper aims to propose a flexible-constraint coyote optimization algorithm; the novelty lies in these points: penalty function is introduced in the objective function to discard any unfeasible solution, an advanced constraint handling technique and empirical relationship between the physical estimated parameters and their natural frequencies.

Design/methodology/approach

Frequency response analysis (FRA) is very significant for transformer winding diagnosis. Interpreting results of a transformer winding FRA is quite challenging. This paper proposes a new methodology to synthesize a nearly unique ELNM physically and electrically coupled for power transformer winding, basing on K-means and metaheuristic algorithm. To this end, the K-means method is used to cluster the setting of control variables, including the self-mutual inductances/capacitances, and the resistances parameters. Afterward, metaheuristic algorithm is applied to determine the cluster centers with high precision and efficiency.

Findings

FRA is performed on a power transformer winding model. Basing on the proposed methodology, the prior knowledge in selecting the initial guess and search space is avoided and the global solution is ensured. The performance of the abovementioned methodology is compared using evaluation expressions to verify its feasibility and accuracy.

Originality/value

The proposed method could be generalized for diagnosis of faults in power transformer winding.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 February 2024

Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer and Emanuel Moutinho Cesconeto

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road…

Abstract

Purpose

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.

Design/methodology/approach

For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices Q and R. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few Q and R parameters, an active system without optimized gain matrices, and an optimized passive system.

Findings

The control with 12 optimized parameters for Q and R provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.

Research limitations/implications

The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.

Practical implications

Better active control gains can be devised to improve performance in vibration attenuation.

Originality/value

The main contribution proposed in this work is the improvement of the Q and R parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 52