Search results

1 – 4 of 4
Article
Publication date: 10 May 2019

Mengsha Liu, J.Y. Li, Lixin Chen and J.S. Ju

The internal force is more complicated in a combined load case than in a single load case, and the influence of the combined load on the stress cannot be neglected. The purpose of…

Abstract

Purpose

The internal force is more complicated in a combined load case than in a single load case, and the influence of the combined load on the stress cannot be neglected. The purpose of this paper is to study the mechanical behavior of the flexible riser under combined load conditions of tension and internal pressure or external pressure.

Design/methodology/approach

The mechanical behavior of the flexible riser under combined load conditions is studied by numerical simulation with a nine-layer detailed finite element model. The layers of flexible riser are modeled separately, and the interactions between layers have been taken into consideration in numerical simulation.

Findings

Under tension and internal pressure or external pressure, the pressure armor will bear extra external pressure because of the squeezing actions between layers caused by tension, and the extra external pressure will increase proportionately with the increase of the tension. Under internal pressure and tension, the internal stress for tension armor was nearly unchanged compared to that under unique tension load, whereas under external pressure and tension, the change of internal stress for tension armor was significant. Prediction methods of internal force for pressure armor and tension armor under pressure and tension are given, and the result from the formula agrees well with the simulation results.

Originality/value

The prediction methods on the internal force of flexible riser proposed in this study are proven accurate, with numerical simulation results, and the prediction methods are convenient for engineering applications.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2021

Vivian Suzano Medeiros, Alan Conci Kubrusly, Raphael Lydia Bertoche, Miguel Andrade Freitas, Claudio Camerini, Jorge Luiz F. Brito and Jean Pierre von der Weid

The inspection of flexible risers is a critical activity to ensure continuous productivity and safety in oil and gas production. The purpose of this paper is to present the design…

Abstract

Purpose

The inspection of flexible risers is a critical activity to ensure continuous productivity and safety in oil and gas production. The purpose of this paper is to present the design and development of a novel automatic underwater tool for riser inspection that fits the most commonly used riser diameters and significantly improves inspection quality and reduces its operating costs.

Design/methodology/approach

The mechanical and electronic design of the inspection system is discussed, as well as its embedded sensors and control system. The tool is equipped with a suspension system that is able to adapt to the riser diameter and negotiate obstacles on the pipe wall. Numerical simulations were carried out to analyze the mechanical design, and a hardware-in-the-loop simulation was developed for tuning the control system. Further, experimental results are presented and discussed.

Findings

Experimental tests in laboratory tanks and shallow seawater have confirmed the effectiveness of the tool for detailed real-time inspection of underwater pipelines.

Practical implications

The use of the proposed tool will potentially reduce the time and costs for riser inspection, currently performed by divers or high-cost ROVs.

Originality/value

The authors present a reliable tool able to perform automatic inspections up to 250 m deep in less than 30 min, equipped with a high-definition visual inspection system, composed of full-HD cameras and lasers and a suspension mechanism that can negotiate sharp obstacles in the pipe wall up to 25 mm high. The tool uses a comprehensive control system that autonomously performs a full inspection, collecting sensors data and returning safely to the surface. Its robust design can be used as basis for several other nondestructive techniques, such as ultrasound and X-ray.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Content available

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 4
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 13 August 2019

Jun Yan, Haitao Hu, Zhixun Yang, Rui Wan and Yang Li

The purpose of this study is to present a multi-scale analysis methodology for calculating the effective stiffnesses and the micro stresses of helically wound structures…

235

Abstract

Purpose

The purpose of this study is to present a multi-scale analysis methodology for calculating the effective stiffnesses and the micro stresses of helically wound structures efficiently and accurately. The helically wound structure is widely applied in ocean and civil engineering as load-bearing structures with high flexibility, such as wire ropes, umbilical cables and flexible risers. Their structures are usually composed of a number of twisted subcomponents with relatively large slender ratio and have the one-dimensional periodic characteristic in the axial direction. As the huge difference between the axial length and the cross-section size of this type of structures, the finite element modeling and theoretical analysis based on some assumption are usually unavailable leading to the reduction of computability; even the optimization design becomes infeasible.

Design/methodology/approach

Based on the asymptotic homogenization theory, the one-dimensional periodic helically wound structure is equivalent to the one-dimensional homogeneous beam. A novel implementation of the homogenization is derived for the analysis of the effective mechanical properties of the helically wound structure, and the tensile, bending, torsional and coupling stiffness properties of the effective beam model are obtained. On this basis, a downscaling analysis formation for the micro-component stress in the one-dimensional periodic wound structure is constructed. The stress of micro-components in the specified geometry position of the helically wound structure is obtained basing on the asymptotic homogenization theory simultaneously.

Findings

By comparing with the result from finite element established accurately, the established multi-scale calculation method of the one-dimensional periodic helically wound structure is verified. The influence of size effects on the macro effective performance and the micro-component stress is discussed.

Originality/value

This paper will provide the theoretical basis for the efficient elastoplastic analysis of the helically wound structure, even the fatigue analysis. In addition, it is necessary to point out that the axial length of the helically wound structure in the general engineering problems that such as deep-sea risers and submarine cables.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 4 of 4