Search results

1 – 10 of 63
Open Access
Article
Publication date: 24 June 2021

Bo Wang, Guanwei Wang, Youwei Wang, Zhengzheng Lou, Shizhe Hu and Yangdong Ye

Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms…

Abstract

Purpose

Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms, there is an unbalanced fault category problem. Most of the current methods to solve this problem have complex algorithm structures, low efficiency and require prior knowledge. This study aims to propose a new method which has a simple structure and does not require any prior knowledge to achieve a fast diagnosis of unbalanced vehicle faults.

Design/methodology/approach

This study proposes a novel K-means with feature learning based on the feature learning K-means-improved cluster-centers selection (FKM-ICS) method, which includes the ICS and the FKM. Specifically, this study defines cluster centers approximation to select the initialized cluster centers in the ICS. This study uses improved term frequency-inverse document frequency to measure and adjust the feature word weights in each cluster, retaining the top τ feature words with the highest weight in each cluster and perform the clustering process again in the FKM. With the FKM-ICS method, clustering performance for unbalanced vehicle fault diagnosis can be significantly enhanced.

Findings

This study finds that the FKM-ICS can achieve a fast diagnosis of vehicle faults on the vehicle fault text (VFT) data set from a railway station in the 2017 (VFT) data set. The experimental results on VFT indicate the proposed method in this paper, outperforms several state-of-the-art methods.

Originality/value

This is the first effort to address the vehicle fault diagnostic problem and the proposed method performs effectively and efficiently. The ICS enables the FKM-ICS method to exclude the effect of outliers, solves the disadvantages of the fault text data contained a certain amount of noisy data, which effectively enhanced the method stability. The FKM enhances the distribution of feature words that discriminate between different fault categories and reduces the number of feature words to make the FKM-ICS method faster and better cluster for unbalanced vehicle fault diagnostic.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 9 December 2022

Rui Wang, Shunjie Zhang, Shengqiang Liu, Weidong Liu and Ao Ding

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual…

Abstract

Purpose

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual network is used to improve the diagnostic accuracy of the bearing fault intelligent diagnosis model in the environment of high signal noise.

Design/methodology/approach

A bearing vibration data generation model based on conditional GAN (CGAN) framework is proposed. The method generates data based on the adversarial mechanism of GANs and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Findings

The method proposed in this paper is verified by the western reserve data set and the truck bearing test bench data set, proving that the CGAN-based data generation method can form a high-quality augmented data set, while the CGAN-based and improved residual with attention mechanism. The diagnostic model of the network has better diagnostic accuracy under low signal-to-noise ratio samples.

Originality/value

A bearing vibration data generation model based on CGAN framework is proposed. The method generates data based on the adversarial mechanism of GAN and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Details

Smart and Resilient Transportation, vol. 5 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 17 June 2021

Muhammad Taimoor, Xiao Lu, Hamid Maqsood and Chunyang Sheng

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in…

Abstract

Purpose

The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in consideration of numerous faults, failures, uncertainties and disturbances. For the importunity of increasing the faults diagnosis and reconstruction preciseness, a new technique is used for modifying the weight parameters of NNs without enhancement of computational complexities.

Design/methodology/approach

Various techniques such as adaptive radial basis functions (ARBF), conventional radial basis functions, adaptive multi-layer perceptron, conventional multi-layer perceptron and extended state observer are presented. For increasing the fault detection preciseness, a new technique is used for updating the weight parameters of radial basis functions and multi-layer perceptron (MLP) without enhancement of computational complexities. Lyapunov stability theory and sliding-mode surface concepts are used for the weight-updating parameters. Based on the combination of these two concepts, the weight parameters of NNs are updated adaptively. The key purpose of utilization of adaptive weight is to enhance the detection of faults with high accuracy. Because of the online adaptation, the ARBF can detect various kinds of faults and failures such as simultaneous, incipient, intermittent and abrupt faults effectively. Results depict that the suggested algorithm (ARBF) demonstrates more confrontation to unknown disturbances, faults and system dynamics compared with other investigated techniques and techniques used in the literature. The proposed algorithms are investigated by the utilization of quadrotor unmanned aerial vehicle dynamics, which authenticate the efficiency of the suggested algorithm.

Findings

The proposed Lyapunov function theory and sliding-mode surface-based strategy are studied, which shows more efficiency to unknown faults, failures, uncertainties and disturbances compared with conventional approaches as well as techniques used in the literature.

Practical implications

For improvement of the system safety and for avoiding failure and damage, the rapid fault detection and isolation has a great significance; the proposed approaches in this research work guarantee the detection and reconstruction of unknown faults, which has a great significance for practical life.

Originality/value

In this research, two strategies such Lyapunov function theory and sliding-mode surface concept are used in combination for tuning the weight parameters of NNs adaptively. The main purpose of these strategies is the fault diagnosis and reconstruction with high accuracy in terms of shape as well as the magnitude of unknown faults. Results depict that the proposed strategy is more effective compared with techniques used in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Article
Publication date: 1 June 2010

Pratesh Jayaswal, S.N. Verma and A.K. Wadhwani

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The…

1754

Abstract

Purpose

The objective of this paper is to provide a brief review of recent developments in the area of applications of ANN, Fuzzy Logic, and Wavelet Transform in fault diagnosis. The purpose of this work is to provide an approach for maintenance engineers for online fault diagnosis through the development of a machine condition‐monitoring system.

Design/methodology/approach

A detailed review of previous work carried out by several researchers and maintenance engineers in the area of machine‐fault signature‐analysis is performed. A hybrid expert system is developed using ANN, Fuzzy Logic and Wavelet Transform. A Knowledge Base (KB) is created with the help of fuzzy membership function. The triangular membership function is used for the generation of the knowledge base. The fuzzy‐BP approach is used successfully by using LR‐type fuzzy numbers of wavelet‐packet decomposition features.

Findings

The development of a hybrid system, with the use of LR‐type fuzzy numbers, ANN, Wavelets decomposition, and fuzzy logic is found. Results show that this approach can successfully diagnose the bearing condition and that accuracy is good compared with conventionally EBPNN‐based fault diagnosis.

Practical implications

The work presents a laboratory investigation carried out through an experimental set‐up for the study of mechanical faults, mainly related to the rolling element bearings.

Originality/value

The main contribution of the work has been the development of an expert system, which identifies the fault accurately online. The approaches can now be extended to the development of a fault diagnostics system for other mechanical faults such as gear fault, coupling fault, misalignment, looseness, and unbalance, etc.

Details

Journal of Quality in Maintenance Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 17 April 2020

Roberto Outa, Fabio Roberto Chavarette, Vishnu Narayan Mishra, Aparecido C. Gonçalves, Luiz G.P. Roefero and Thiago C. Moro

In recent years, the mechanical industries began to apply many investments in research and technological development to obtain efficient methods to analyze the integrity of…

Abstract

Purpose

In recent years, the mechanical industries began to apply many investments in research and technological development to obtain efficient methods to analyze the integrity of structures and prevent disasters and/or accidents, ensuring people’s lives and preventing economic losses. Any structure, whether mechanical or aeronautical, before being put into use undergoes a structural integrity assessment and testing. In this case, non-destructive evaluations are performed, aiming to estimate the degree of safety and reliability of the structure. For this, there are techniques traditionally used such as ultrasonic inspection, X-ray, acoustic emission tests, among other techniques. The traditional techniques may even have a good instrumental apparatus and be well formulated for structural integrity assessment; however, these techniques cannot meet growing industrial needs, even more so when structures are in motion. The purpose of this paper is to demonstrate artificial immune systems (AISs), ate and strengthen the emergence of an innovative technological tool, the biological immune systems and AISs, and these are presented as computing methods in the field of structural health monitoring (SHM).

Design/methodology/approach

The concept of SHM is based on a fault detection mechanism used in industries, and in other applications, involving the observation of a structure or a mechanical system. This observation occurs through the dynamic response of periodic measurements, later related to the statistical analysis, determining the integrity of the system. This study aims to develop a methodology that identifies and classifies a signal in normal signals or in faults, using an algorithm based on artificial immunological systems, being the negative selection algorithm, and later, this algorithm classifies the failures in probabilities of failure and degree of fault severity. The results demonstrate that the proposed SHM is efficient and robust for prognosis and failure detection.

Findings

The present study aims to develop different fast access methodologies for the prognosis and detection of failures, classifying and judging the types of failures based on AISs. The authors declare that the present study was neither published in any other vehicle of scientific information nor is under consideration for publication in another scientific journal, and that this paper strictly followed the ethical procedures of research and publication as requested.

Originality/value

This study is original by the fact that conventional structural integrity monitoring methods need improvements, which intelligent computing techniques can satisfy. Intelligent techniques are tools inspired by natural and/or biological processes and belong to the field of computational intelligence. They present good results in problems of pattern recognition and diagnosis and thus can be adapted to solve problems of monitoring and identifying structural failures in mechanical and aeronautical engineering. Thus, the proposal of this study demonstrates and strengthens the emergence of an innovative technological tool, the biological immune system and the AIS, and these are presented as computation methods in the field of SHM in rotating systems – a topic not yet addressed in the literature.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 September 2021

Tingting Wang, Dongli Song, Weihua Zhang, Shiqi Jiang and Zhiwei Wang

The purpose of this paper is to analyze the unbalanced magnetic pull (UMP) of the rotor of traction motor and the influence of the UMP on thermal characteristics of traction motor…

Abstract

Purpose

The purpose of this paper is to analyze the unbalanced magnetic pull (UMP) of the rotor of traction motor and the influence of the UMP on thermal characteristics of traction motor bearing.

Design/methodology/approach

The unbalanced magnetic pull on the rotor with different eccentricity was calculated by Fourier series expansion method. A bearing thermal analysis finite element model considering both the vibration of high-speed train caused by track irregularity and the UMP of traction motor rotor was established. The validity of the model is verified by experimental data obtained from a service high-speed train.

Findings

The results show that thermal failure of bearing subassemblies most likely occurs at contact area between the inner ring and rollers. The UMP of rotor of traction motor has a significant effect on the temperature of the inner ring and roller of the bearing. When the eccentricity is 10%, the temperature can even be increased by about 12°C. Therefore, the UMP of rotor of traction motor must be considered in thermal analysis of traction motor bearing.

Originality/value

In the thermal analysis of the bearing of the traction motor of high-speed train, the UMP of the rotor of the traction motor is considered for the first time

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2012

Piotr Kołodziejek and Elżbieta Bogalecka

The purpose of this paper is to investigate the need for a universal method for sensorless controlled induction motor drive diagnosis. The increasing number of sensorless control…

Abstract

Purpose

The purpose of this paper is to investigate the need for a universal method for sensorless controlled induction motor drive diagnosis. The increasing number of sensorless control systems in industrial applications require a universal method for the drive diagnosis, which provides reliable diagnostic reasoning independent of control system structure and state variables measurement or estimation method.

Design/methodology/approach

Simulations and experimental investigation has been done with assumptions of multiscalar control system as a generalized vector control method, voltage source inverter application, sensorless control system based on selected speed observer structure and squirrel cage induction motor. Broken rotor symptoms are analyzed in the state variables and control system variables using DSP processing without outside measurement devices.

Findings

Symptoms of rotor asymmetry caused by broken rotor in the state and control variables was identified and symptoms amplitudes were compared. Based on the simulation and experimental results a new diagnosis method was proposed.

Practical implications

For early broken rotor detection there is a need to identify variables most sensitive to rotor asymmetry. In closed‐loop operation broken rotor symptom signals amplitudes are changed due to control system influence and in sensorless control due to used estimator frequency characteristics. The proposed method assumption is to aggregate symptoms in variables that altogether give results for broken rotor range regardless of applied control system structure or state variable estimator.

Originality/value

This paper shows control system influence to rotor fault symptom amplitudes in the state and control system variables. Identified phenomena is used for a new diagnosis method development.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 24 June 2021

Haosen Liu, Youwei Wang, Xiabing Zhou, Zhengzheng Lou and Yangdong Ye

The railway signal equipment failure diagnosis is a vital element to keep the railway system operating safely. One of the most difficulties in signal equipment failure diagnosis

Abstract

Purpose

The railway signal equipment failure diagnosis is a vital element to keep the railway system operating safely. One of the most difficulties in signal equipment failure diagnosis is the uncertainty of causality between the consequence and cause for the accident. The traditional method to solve this problem is based on Bayesian Network, which needs a rigid and independent assumption basis and prior probability knowledge but ignoring the semantic relationship in causality analysis. This paper aims to perform the uncertainty of causality in signal equipment failure diagnosis through a new way that emphasis on mining semantic relationships.

Design/methodology/approach

This study proposes a deterministic failure diagnosis (DFD) model based on the question answering system to implement railway signal equipment failure diagnosis. It includes the failure diagnosis module and deterministic diagnosis module. In the failure diagnosis module, this paper exploits the question answering system to recognise the cause of failure consequences. The question answering is composed of multi-layer neural networks, which extracts the position and part of speech features of text data from lower layers and acquires contextual features and interactive features of text data by Bi-LSTM and Match-LSTM, respectively, from high layers, subsequently generates the candidate failure cause set by proposed the enhanced boundary unit. In the second module, this study ranks the candidate failure cause set in the semantic matching mechanism (SMM), choosing the top 1st semantic matching degree as the deterministic failure causative factor.

Findings

Experiments on real data set railway maintenance signal equipment show that the proposed DFD model can implement the deterministic diagnosis of railway signal equipment failure. Comparing massive existing methods, the model achieves the state of art in the natural understanding semantic of railway signal equipment diagnosis domain.

Originality/value

It is the first time to use a question answering system executing signal equipment failure diagnoses, which makes failure diagnosis more intelligent than before. The EMU enables the DFD model to understand the natural semantic in long sequence contexture. Then, the SMM makes the DFD model acquire the certainty failure cause in the failure diagnosis of railway signal equipment.

Details

Smart and Resilient Transportation, vol. 3 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 9 November 2023

Mohammadhossein Arianborna, Jawad Faiz, Mehrage Ghods and Amirhossein Erfani-Nik

The aim of this paper is to introduce an accurate asymmetric fault index for the diagnosis of the faulty linear permanent magnet Vernier machine (LPMVM).

Abstract

Purpose

The aim of this paper is to introduce an accurate asymmetric fault index for the diagnosis of the faulty linear permanent magnet Vernier machine (LPMVM).

Design/methodology/approach

Three-dimensional finite element method is applied to model the LPMVM. The geometrical and physical properties of the machine, the effect of stator and translator teeth, magnetic saturation of core and nonuniform air gap due to asymmetric fault are taken into account in the simulation. The air gap asymmetric fault is proposed. This analytical method estimates the air gap flux density of an LPMVM.

Findings

This paper presents an analytical method to predict the performance of a healthy and faulty LPMVM. The introduced index is based on the frequency patterns of the stator current. Besides, the robustness of the index in different loads and fault severity is addressed.

Originality/value

Introducing index for air gap asymmetry fault diagnosis of LPMVM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 63