Search results

1 – 10 of 460
Article
Publication date: 26 July 2018

Adeela Nasreen, Muhammad Umair, Khubab Shaker, Syed Talha Ali Hamdani and Yasir Nawab

The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air…

Abstract

Purpose

The purpose of this paper is to investigate the effect of materials, three dimensional (3D) structure and number of fabric layers on ultraviolet protection factor (UPF), air permeability and thickness of fabrics.

Design/methodology/approach

Total 24 fabrics samples were developed using two 3D structures and two weft materials. In warp direction cotton (CT) yarn and in weft direction polypropylene (PP) and polyester (PET) were used. Air permeability, thickness and UPF testings were performed and relationship among fabric layers, air permeability, thickness and UPF was developed.

Findings

UPF and thickness of fabrics increases with number of fabric layers, whereas air permeability decreases with the increase in number of fabric layers. Furthermore, change of multilayer structure from angle interlock to orthogonal interlock having same base weave does not give significant effect on UPF. However, change of material from polyester (PET) to polypropylene (PP) has a dominant effect on UPF. Minimum of three layers of cotton/polyester fabric, without any aid of ultraviolet radiation (UV) resistant coating, are required to achieve good. Cotton/polyester fabrics are more appropriate for outdoor application due to their long-term resistance with sunlight exposure.

Originality/value

Long-term exposure to UV is detrimental. So, there is need of proper selection of material and fabric to achieve ultraviolet protection. 3D fabrics have yarns in X, Y as well as in Z directions which provide better ultraviolet protection as compared to two dimensional (2D) fabrics. In literature, mostly work was done on ultraviolet protection of 2D fabrics and surface coating of fabrics. There is limited work found on UPF of 3D woven fabrics.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 May 2020

Asfandyar Khan, Ahsan Nazir, Abdur Rehman, Maryam Naveed, Munir Ashraf, Kashif Iqbal, Abdul Basit and Hafiz Shahzad Maqsood

This review deals with the pros and cons of ultraviolet (UV) radiation on human beings and the role of textile clothing and the chemicals used for textiles to protect from their…

Abstract

Purpose

This review deals with the pros and cons of ultraviolet (UV) radiation on human beings and the role of textile clothing and the chemicals used for textiles to protect from their harmful effects.

Design/methodology/approach

UV radiation (UVR) which has further divided into UVA, UVB, and UVC. Almost 100% of UVC and major portion of UVB are bounced back to stratosphere by ozone layer while UVA enters the earth atmosphere. Excessive exposure of solar or artificial UVR exhibit potential risks to human health. UVR is a major carcinogen and excessive exposure of solar radiation in sunlight can cause cancer in the lip, skin squamous cell, basal cell and cutaneous melanoma, particularly in people with the fair skin.

Findings

This article aims to provide a comprehensive overview of the harmful effects of UVR on human skin, factors affecting UV irradiance and factors affecting UV protection offered by textile clothing.

Originality/value

Effect of fiber properties, yarn properties, fabric construction, fabric treatments and laundering has been reviewed along with the identification of gaps in the reported research. A comparison of inorganic and organic UV absorbers has also been given along with different testing and evaluation methods for UV protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 October 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is…

Abstract

Purpose

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is highly cherished for summerwear, it is sine qua non to understand the structural parameters that effectively strike a good balance between UV protection and thermophysiological comfort of the wearer. Relatively heavy fabrics protect from UVR, but comfort is compromised because of waning porosity, increase in thickness and thermal insulation. The purpose of this paper is to engineer knits that will bestow maximum UV protection while preserving the thermophysiological comfort of the wearer.

Design/methodology/approach

In total, 27 cotton single jersey fabrics with different areal densities and yarn counts were selected. Ultraviolet protection factor (UPF) was calculated based on the work of Imrith (2022). To précis, the authors constructed a UV box to measure the UPF of fabrics, denoted as UPFB. UPFB data were correlated with AATCC 183-2004 and yielded high correlation, R2 0.977. It was concluded that UPF 50 corresponds to UPFB 94.3. Thermal comfort properties were measured on the Alambeta and water-vapour resistance on the Permetest. Linear programming (LP) was used to optimize UPFB and comfort. Linear optimization focused on maximizing UPFB while keeping the thermophysiological comfort and areal density as constraints.

Findings

The resulting linear geometrical and sensitivity analyses generated multiple technically feasible solutions of fabrics thickness and porosity that gave valid UPFB, thermal absorptivity and water-vapour and thermal resistance. Subsequently, an interactive optimization software was developed to predict the stitch length, tightness factor and yarn count for optimum UPFB from a given areal density. The predicted values were then used to knit seven 100% cotton single jersey fabrics and were tested for UV protection. All seven fabrics gave UPFB above the threshold, that is, higher than 94.3. The mathematical model demonstrated good correlations with the optimized parameters and experimental values.

Originality/value

The optimization software predicted the optimum UPFB reasonably well, starting from the fabric structural and constructional parameters. In addition, the models were developed as interactive user interfaces, which can be used by knitted fabric developers to engineer cotton knits for maximizing UV protection without compromising thermophysiological comfort. It has been demonstrated that LP is an efficient tool for the optimization and prediction of targeted knitted fabrics parameters.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 April 2022

Xiang Zhou, Yankun Yin, Zhiyu Huang, Lu Fu, Luoxin Wang, Shaohua Chen and Hua Wang

In this study, an eco-friendly cotton fabric (CF) treatment method was proposed to induce anti-ultraviolet and flame retardant properties, and a new application of tannic acid…

Abstract

Purpose

In this study, an eco-friendly cotton fabric (CF) treatment method was proposed to induce anti-ultraviolet and flame retardant properties, and a new application of tannic acid (TA) and phytic acid (PA) in ultraviolet protection and flame retardant fabric was put forward.

Design/methodology/approach

By combining diethylenetriamine, PA and TA on CF, a chemical reaction intumescent flame retardant CF with anti-ultraviolet and anti-flame retardance was developed.

Findings

The flame retardant and ultraviolet resistance of CF were characterized by LOI, vertical combustion, cone calorimetry and ultraviolet resistance testing. SEM, XPS, FTIR and other tests were used to analyze the chemical composition, surface morphology and residual carbon after combustion of the CF, and it was confirmed that the modified CF has good ultraviolet resistance and flame retardant performance.

Originality/value

In this study, an eco-friendly CF treatment method was proposed to induce anti-ultraviolet and flame retardant properties, and a new application of TA and PA in ultraviolet protection and flame retardant fabric was put forward.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2011

Dr. Hireni Mankodi and Dr. Bipin Agarwal

There is a growing demand in the marketplace for textile apparel that offers comfort and protection from the harmful effects of ultraviolet (UV) radiation. The UV rays of the sun…

Abstract

There is a growing demand in the marketplace for textile apparel that offers comfort and protection from the harmful effects of ultraviolet (UV) radiation. The UV rays of the sun when they come into contact with skin lead to all kinds of skin problems. The accumulated effects damage the skin’s DNA and cell function. In addition to skin cancer, excessive sun exposure also causes pre-malignant actinic keratoses, wrinkles, dark and unsightly blotches, leathery skin and prone to destabilizing the immune system. Research has shown that sun (UV) protective clothing is one of the most effective ways to protect against skin cancer. Such fabrics are specifically designed for sun protection by covering a maximum amount of skin and made from a fabric rated for its level of UV protection. Throwing on a sun protective shirt with an ultraviolet protection factor (UPF) of 30+ value is a proactive decision, which can simply help to live a healthier life. Hence, an attempt has been made in this study to visualize the effect of an application of titanium dioxide nano finish onto cotton and its blends with viscose and polyester to provide nano UV protection, without hampering the strength of the substrate.

Details

Research Journal of Textile and Apparel, vol. 15 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 October 2023

Junling Wu, Longfei Sun and Long Lin

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve…

22

Abstract

Purpose

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve good dyeing depth, fastness and ultraviolet (UV) protection.

Design/methodology/approach

Firstly, single factor experiments were used to determine the basic dyeing conditions of Coreopsis tinctoria. The optimal process conditions for direct dyeing were determined through orthogonal experiments. After that, the dyeing with mordant was used. Based on the previously determined optimal process conditions, silk fabrics were dyed with different mordanting methods, with different mordants and mordant dosages. The dyeing results were compared, in terms of the K/S values of the dyed fabrics, to determine the most appropriate dyeing conditions with mordant.

Findings

The extract of Coreopsis tinctoria can dye silk fabrics satisfactorily. Good dyeing depth and fastness can be obtained by using suitable dyeing methods and dyeing conditions, especially when using the natural mordant pomegranate rind and the rare earth mordant neodymium oxide. The silk fabrics dyed with Coreopsis tinctoria have good UV resistance, which allows a desirable finishing effect to be achieved while dyeing, using a safe and environmentally friendly method.

Research limitations/implications

The composition of Coreopsis tinctoria is complex, and the specific composition of colouring the silk fibre has not been determined. There are many factors that affect the dyeing experiment, which have an impact on the experimental results.

Practical implications

The results of this study may help expand the application of Coreopsis tinctoria beyond medicine.

Originality/value

To the best of the authors’ knowledge, this paper is the first report on dyeing silk with the extract of Coreopsis tinctoria achieving good dyeing results. Its depth of staining and staining fastness were satisfactory. Optimum dyeing method and dyeing conditions have been identified. The fabric dyed with Coreopsis tinctoria has good UV protection effect, which is conducive to improving the application value of the dyeing fabric. The findings help offer a new direction for the application of medicinal plants in the eco-friendly dyeing of silk.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 October 2014

K. Vellingiri, T. Ramachandran and P. Senthilkumar

Any change in physical performance of the fibre corresponds to a change in its molecular structure. Basically polyester is hydrophobic in nature due to the absence of attracting…

Abstract

Purpose

Any change in physical performance of the fibre corresponds to a change in its molecular structure. Basically polyester is hydrophobic in nature due to the absence of attracting polar groups and the dense packing in its polymeric structure. Due to the dense packing in polymeric structure and lack of hydroxyl groups of polyester it does not absorb water hence breathability is poor. The possibility of using air and oxygen plasma treatments for fibre surface activation to facilitate the improvement of hydrophilicity is attempted and has been improved. The purpose of this paper is to study the possibility of engineering the multifunctional of fabrics.

Design/methodology/approach

The treated fabric is evaluated through measuring the ultraviolet protection factor, thermal resistance, and antibacterial activity properties. Scanning electron microscopy and transmission electron microscopy graphs show deposition of nano particles (NPs) of Chitosan, TiO2 and ZnO onto the fibre after washing several times.

Findings

Air plasma-nano Chitosan treatment affects positively the antibacterial activity, thermal resistance of the fibre and air plasma-nano TiO2 and ZnO the fibre protection against ultraviolet rays. Furthermore, the plasma treatment solves an environmental problem which offers safe production process and working place and decreases the unit cost.

Originality/Value

The authors are confident that textiles will adopt this technology in the future.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 February 2021

Naser Gad Al-Balakocy, Talaat Hassan, Safaa Khalil and Sherif Abd El-Salam

This study aims to study the simultaneous treatment of polyethylene terephthalate (PET) fabric with sodium hydroxide (NaOH) and TiO2 nanoparticles (NPs).

Abstract

Purpose

This study aims to study the simultaneous treatment of polyethylene terephthalate (PET) fabric with sodium hydroxide (NaOH) and TiO2 nanoparticles (NPs).

Design/methodology/approach

PET fabrics loaded by TiO2 NPs were investigated by the use of scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Fourier transformed infrared spectroscopy (FT-IR). Factors affecting the finishing process such as NaOH and TiO2 NPs concentrations, finishing duration and temperature were discussed.

Findings

The finished PET fabrics imparted new properties such as antimicrobial and ultraviolet protection factor protection, what is undoubtedly will increase the spread of this type of fabric and its use in new areas.

Research limitations/implications

The method used mainly depends on activating the surface of PET fabrics by a chemical method, specifically NaOH to cause partial decomposition, which may lead to an environmental impact.

Practical implications

The obtained results revealed that the simultaneous treatment of PET fabric with NaOH and TiO2 NPs showed antimicrobial and UV protection properties. They exhibited a strong antimicrobial activity and UV protection efficiency even after five washing cycles, indicating excellent laundering durability.

Originality/value

The approach has simplicity and implementability on an industrial scale without cost investment.

Details

Research Journal of Textile and Apparel, vol. 25 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 January 2020

Ashitosh Pawar, Santosh Biranje, Kaustubh Patankar and Ravindra Vithal Adivarekar

This paper aims to focus on the optimisation of dyeing recipe for dyeing of silk fabric with semisynthetic azo dyes synthesised by chemical modification of areca nut extract.

142

Abstract

Purpose

This paper aims to focus on the optimisation of dyeing recipe for dyeing of silk fabric with semisynthetic azo dyes synthesised by chemical modification of areca nut extract.

Design/methodology/approach

The response surface model (Box–Behnken design) was used to establish the relation between the parameters of dyeing such as time, temperature and material to liquor ratio. Their output responses in terms of colour strength (K/S values) are reported. Their relationship was tested for predictability and the experimental values and found to match closely, which confirms the model suitability.

Findings

Dyed fabrics were tested for their fastness properties such as wash, rub and lightfastness. The results of the fastness tests indicate that modified dyes have good dyeability towards silk fabric. The dyed fabrics were also tested for ultraviolet protection factor and antimicrobial activity, which showed very promising results.

Originality/value

Banned amine testing was done, which confirms the absence of banned amine in synthesised dyes, which indicates the potential of its sustainability. Also, such an approach of modification of natural dyes as semi-synthetic dyes can be surely considered to be a step towards its widespread acceptability and further commercialisation.

Details

Research Journal of Textile and Apparel, vol. 24 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 460