Search results

1 – 10 of 62
Open Access
Article
Publication date: 11 July 2023

Oscar Y. Moreno Rocha, Paula Pinto, Maria C. Consuegra, Sebastian Cifuentes and Jorge H. Ulloa

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in…

Abstract

Purpose

This study aims to facilitate access to vascular disease screening for low-income individuals living in remote and conflict areas based on the results of a pilot trial in Colombia. Also, to increase the amount of diagnosis training of vascular surgery (VS) in civilians.

Design/methodology/approach

The operation method includes five stages: strategy development and adjustment; translation of the strategy into a real-world setting; operation logistics planning; strategy analysis and adoption. The operation plan worked efficiently in this study’s sample. It demonstrated high sensibility, efficiency and safety in a real-world setting.

Findings

The authors developed and implemented a flow model operating plan for screening vascular pathologies in low-income patients pro bono without proper access to vascular health care. A total of 140 patients from rural areas in Colombia were recruited to a controlled screening session where they underwent serial noninvasive ultrasound assessments conducted by health professionals of different training stages in VS.

Research limitations/implications

The plan was designed to be implemented in remote, conflict areas with limited access to VS care. Vascular injuries are critically important and common among civilians and military forces in regions with active armed conflicts. As this strategy can be modified and adapted to different medical specialties and geographic areas, the authors recommend checking the related legislation and legal aspects of the intended areas where we will implement this tool.

Practical implications

Different sub-specialties can implement the described method to be translated into significant areas of medicine, as the authors can adjust the deployment and execution for the assessment in peripheral areas, conflict zones and other public health crises that require a faster response. This is necessary, as the amount of training to which VS trainees are exposed is low. A simulated exercise offers a novel opportunity to enhance their current diagnostic skills using ultrasound in a controlled environment.

Social implications

Evaluating and assessing patients with limited access to vascular medicine and other specialties can decrease the burden of vascular disease and related complications and increase the number of treatments available for remote communities.

Originality/value

It is essential to assess the most significant number of patients and treat them according to their triage designation. This management is similar to assessment in remote areas without access to a proper VS consult. The authors were able to determine, classify and redirect to therapeutic interventions the patients with positive findings in remote areas with a fast deployment methodology in VS.

Plain language summary

Access to health care is limited due to multiple barriers and the assessment and response, especially in peripheral areas that require a highly skilled team of medical professionals and related equipment. The authors tested a novel mobile assessment tool for remote and conflict areas in a rural zone of Colombia.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 7 February 2024

Chinkle Kaur and Jasleen Kaur

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and…

Abstract

Purpose

Millets are ancient grains, following wheat, that have been a fundamental source of human sustenance. These are nutrient-rich small-seeded grains that have gained prominence and admiration globally due to their super resilience in diverse climates and significant nutritional benefits. As millets are renowned for their nutritional richness, the demand for millet-based products increases. Hence, this paper aims in identifying the growing need for innovative processing techniques that not only preserve their nutritional content but also extend their shelf life.

Design/methodology/approach

In traditional times, heat was the only means of cooking and processing of the foods, but the amount of damage they used to cause to the sensorial and nutritional properties was huge. Millets’ sensitivity toward heat poses a challenge, as their composition is susceptible to disruption during various heat treatments and manufacturing processes. To cater to this drawback while ensuring the prolonged shelf life and nutrient preservation, various innovative approaches such as cold plasma, infrared technology and high hydrostatic pressure (HPP) processing are being widely used. These new methodologies aim on inactivating the microorganisms that have been developed within the food, providing the unprocessed, raw and natural form of nutrients in food products.

Findings

Among these approaches, nonthermal technology has emerged as a key player that prioritizes brief treatment periods and avoids the use of high temperatures. Nonthermal techniques (cold plasma, infrared radiation, HPP processing, ultra-sonication and pulsed electric field) facilitate the conservation of millet’s nutritional integrity by minimizing the degradation of heat-sensitive nutrients like vitamins and antioxidants. Acknowledging the potential applications and processing efficiency of nonthermal techniques, the food industry has embarked on substantial investments in this technology. The present study provides an in-depth exploration of the array of nonthermal technologies used in the food industry and their effects on the physical and chemical composition of diverse millet varieties.

Originality/value

Nonthermal techniques, compared to conventional thermal methods, are environmentally sound processes that contribute to energy conservation. However, these conveniences are accompanied by challenges, and this review not only elucidates these challenges but also focuses on the future implications of nonthermal techniques.

Article
Publication date: 14 February 2024

Parsa Aghaei and Sara Bayramzadeh

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological…

Abstract

Purpose

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological equipment could be optimized in relation to the TR’s space.

Design/methodology/approach

A total of 21 focus group sessions were conducted with 69 trauma team members, all of whom worked in Level I TRs from six teaching hospitals in the USA.

Findings

The collected data was analyzed and categorized into three parent themes: imaging equipment, assistive devices and room features. The results of the study suggest that trauma team members place high importance on the availability and versatility of the technological equipment in the TR environment. Although CT scans are a usual procedure necessity in TRs, few facilities were optimized for easy access to CT-scanners for the TR. The implementation of cameras and screens was suggested as an improvement to accommodate situational awareness. Rapid sharing of data, such as imaging results, was highly sought after. Unorthodox approaches, such as the use of automatic doors, were associated with slowing down the course of actions.

Practical implications

This study provides health-care designers with the knowledge they need to make informed decisions when designing TRs. It will cover key considerations such as room layout, equipment selection, lighting and controls. Implementing the strategies will help minimize negative patient outcomes.

Originality/value

Level I TRs are a critical element of emergency departments and designing them correctly can significantly impact patient outcomes. However, designing a TR can be a complex process that requires careful consideration of various factors, including patient safety, workflow efficiency, equipment placement and infection control. This study suggests multiple considerations when designing TRs.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 7 February 2024

Nancy Sobh, Nagla Elshemy, Sahar Nassar and Mona Ali

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times…

Abstract

Purpose

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times. Later, as technology advanced, these plants and herbs gained significant relevance in some industries due to their suitable chemical composition, abundant availability and ease of access. Aegle marmelos is a species of plant that may be found in nature. Yet, little or very little literature was located on the coloration behavior of this plant’s leaves. This study aims to focus on the effect of different parameters on the extraction of colorant from Aegle marmelos leaves.

Design/methodology/approach

Some factors that affected on the extraction processes were examined and found to have significant impacts on the textile dyeing such as the initial dye concentration, extracted temperature, extracted bath pH and extracted time were all changed to see how they affected color extraction. The authors report a direct comparison between three heating methods, namely, microwave irradiation (MWI), ultrasonic waves (USW) and conventional heating (CH). The two kinetic models have been designed (pseudo-first and pseudo-second orders) in the context of these experiments to investigate the mechanism of the dyeing processes for fabrics under study. Also, the experimental data were analyzed according to the Langmuir and Freundlich isotherms.

Findings

From the result, it was discovered these characteristics were found to have a substantial effect on extraction efficiency. Temperature 90°C and 80°C when using CH and USW, respectively, while at 90% watt when using MWI, period 120 min when using CH as well as USW waves, while 40 min when using MWI, and pH 4, 5 and 10 for polyamide, wool and cotton, respectively, were the optimal extraction conditions. Also, the authors can say that wool gives a higher absorption than the other fabric. Additionally, MWI provided the best color strength (K/S) value, and homogeneity, at low temperatures reducing the energy and time consumed. The coloring follows the order: MWI > USW > CH. The adsorption isotherm of wool could be well fitted by Freundlich isotherm when applying CH and USW as a heating source, while it is well fitted by the Langmuir equation in the case of MWI. In the study, it was observed that the pseudo-first-order kinetic model fits better the experimental results of CH with a constant rate K1 = −0.000171417 mg/g.min, while the pseudo-second-order kinetic model fits better the experimental results of absorption of both MWI (K2 = 38.14022572 mg/g.min) and USW (K2 = 12.45343554 mg/g.min).

Research limitations/implications

There is no research limitation for this work. Dye was extracted from Aegle marmelos leaves by applying three different heating sources (MWI, ultrasonic waves [USWW] and CH).

Practical implications

This work has practical applications for the textile industry. It is concluded that using Aegle marmelose leaves can be a possible alternative to extract dye from natural resource by applying new technology to save energy and time and can make the process greener.

Social implications

Socially, it has a good impact on the ecosystem and global community because the extracted dye does not contain any carcinogenic materials.

Originality/value

The work is original and contains value-added products for the textile industry and other confederate fields.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 February 2024

Nagla Elshemy, Mona Ali and Reem Nofal

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard…

30

Abstract

Purpose

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard technique of extraction.

Design/methodology/approach

The effect of the heating source, extracted time, temperature and pH of extracted solution on the extraction was studied. The obtained gum is subsequently used for silk screen printing on cotton, linen and viscous fabrics. Rheological properties and viscosity of the printing paste were scrutinized in the current study to get a better insight into this important polysaccharide. The output of this effort aimed to specify the parameters of the processes for printing textiles to serve in women’s fashion clothes by applying innovated handmade combinations of Islamic art motives using a quick and affordable method. Seven designs are executed, and inspiring from them, seven fashion designs of ladies’ clothes were designed virtually by Clo 3D software.

Findings

The result recorded that the new gum has excellent printing properties. In addition, they have better rheological properties, viscosity, chromatic strength and fastness qualities, all of which could help them in commercial production.

Research limitations/implications

Flaxseed and three different fabric types (Cotton, Linen and Viscous) were used.

Practical implications

Synthesis of a new biodegradable thickener from a natural resource, namely, flaxseed, by applying new technology to save time, water and energy.

Originality/value

Synthesis of eco-friendly biodegradable thickener and used in textile printing alternative to the synthetic thickener.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 August 2023

Supuck Prugsiganont and Tanut Waroonkun

This study aims to investigate the physical environmental problems of two Thai community hospitals’ outpatient departments (OPDs) during the COVID-19 outbreak and to provide…

Abstract

Purpose

This study aims to investigate the physical environmental problems of two Thai community hospitals’ outpatient departments (OPDs) during the COVID-19 outbreak and to provide design guidelines for respiratory disease prevention.

Design/methodology/approach

A three-step method was used. The first step involved walk-through observations at Mae Wang Hospital and Doi Saket Hospital to assess the physical environment. The second step consisted of interviews with 22 medical staff working in the two hospitals. Third, the observation and interview data were used to develop a preliminary design guideline, which was evaluated by two focus groups comprising the same interview participants.

Findings

The observational findings showed that the two hospitals had difficulties following the COVID-19 prevention protocol due to physical environmental problems. Four different themes emerged from the analysis of the medical staff interviews. The preliminary design guidelines that were evaluated through two focus group discussions resulted in design recommendations for four areas (the overall building, clinical, support and staff areas) in the Mae Wang and Doi Saket OPD buildings. Three topics of design recommendations were provided to reduce the spread of COVID-19: improving hospital management, space design and air quality.

Originality/value

To the best of the authors’ knowledge, this study is the first to provide design guidelines for COVID-19 and respiratory disease prevention in Thai community hospital OPD buildings.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 29 September 2021

Swetha Parvatha Reddy Chandrasekhara, Mohan G. Kabadi and Srivinay

This study has mainly aimed to compare and contrast two completely different image processing algorithms that are very adaptive for detecting prostate cancer using wearable…

Abstract

Purpose

This study has mainly aimed to compare and contrast two completely different image processing algorithms that are very adaptive for detecting prostate cancer using wearable Internet of Things (IoT) devices. Cancer in these modern times is still considered as one of the most dreaded disease, which is continuously pestering the mankind over a past few decades. According to Indian Council of Medical Research, India alone registers about 11.5 lakh cancer related cases every year and closely up to 8 lakh people die with cancer related issues each year. Earlier the incidence of prostate cancer was commonly seen in men aged above 60 years, but a recent study has revealed that this type of cancer has been on rise even in men between the age groups of 35 and 60 years as well. These findings make it even more necessary to prioritize the research on diagnosing the prostate cancer at an early stage, so that the patients can be cured and can lead a normal life.

Design/methodology/approach

The research focuses on two types of feature extraction algorithms, namely, scale invariant feature transform (SIFT) and gray level co-occurrence matrix (GLCM) that are commonly used in medical image processing, in an attempt to discover and improve the gap present in the potential detection of prostate cancer in medical IoT. Later the results obtained by these two strategies are classified separately using a machine learning based classification model called multi-class support vector machine (SVM). Owing to the advantage of better tissue discrimination and contrast resolution, magnetic resonance imaging images have been considered for this study. The classification results obtained for both the SIFT as well as GLCM methods are then compared to check, which feature extraction strategy provides the most accurate results for diagnosing the prostate cancer.

Findings

The potential of both the models has been evaluated in terms of three aspects, namely, accuracy, sensitivity and specificity. Each model’s result was checked against diversified ranges of training and test data set. It was found that the SIFT-multiclass SVM model achieved a highest performance rate of 99.9451% accuracy, 100% sensitivity and 99% specificity at 40:60 ratio of the training and testing data set.

Originality/value

The SIFT-multi SVM versus GLCM-multi SVM based comparison has been introduced for the first time to perceive the best model to be used for the accurate diagnosis of prostate cancer. The performance of the classification for each of the feature extraction strategies is enumerated in terms of accuracy, sensitivity and specificity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 62