Search results

1 – 10 of over 7000
Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 August 2022

Long Liu and Songqiang Wan

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity

89

Abstract

Purpose

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity and flexibility of reinforced concrete (RC) beams, a new composite reinforcement method using ultra-high performance concrete (UHPC) layer in the compression zone of RC beams is submitted based on embedding CFRP strips in the tension zone of RC beams. This paper aims to discuss the aforementioned points.

Design/methodology/approach

The experimental beam was simulated by ABAQUS, and compared with the experimental results, the validity of the finite element model was verified. On this basis, the reinforced RC beam is used as the control beam, and parameters such as the CFRP strip number, UHPC layer thickness, steel bar ratio and concrete strength are studied through the verified model. In addition, the numerical calculation results of yield strength, ultimate strength, failure deflection and flexibility are also given.

Findings

The flexural bearing capacity of RC beams supported by the new method is 132.3% higher than that of unreinforced beams, and 7.8% higher than that of RC beams supported only with CFRP strips. The deflection flexibility coefficient of the new reinforced RC beam is 8.06, which is higher than that of the unreinforced beam and the reinforced concrete beam with only CFRP strips embedded in the tension zone.

Originality/value

In this paper, a new reinforcement method is submitted, and the effects of various parameters on the ultimate bearing capacity and flexibility of reinforced RC beams are analyzed by the finite element numerical simulation. Finally, the effectiveness of the new method is verified by the analytical formula.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 3 August 2021

Long Liu, Lifeng Wang and Ziwang Xiao

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method…

Abstract

Purpose

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method to improve its bearing capacity. The purpose of this paper is to explore the influence of anchoring steel plates of different thicknesses on the bearing capacity of hollow slab beam and to judge its working status.

Design/methodology/approach

First, static load experiments are carried out on two in-service RC hollow slab beams; meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Finally, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.

Findings

When steel plates of different thicknesses are adopted to reinforce RC hollow slab beams, the bearing capacity increases with the increase of the steel plate thickness in a certain range. But when the steel plate thickness reaches a certain level, bearing capacity is no longer influenced. The displacement ductility coefficient decreases with the increase of steel plate thickness.

Originality/value

Based on experimental study, this paper makes an extrapolation analysis of the bearing capacity of hollow slab beams reinforced with steel plates of different thicknesses through finite element simulation and discusses the influence on ductility. This method not only ensures the accuracy of bearing capacity evaluation but also does not need many samples, which is economical to a certain extent. The research results provide a basis for the reinforcement design of similar bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 December 2023

Lifeng Wang, Jiwei Bi, Long Liu and Ziwang Xiao

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state…

Abstract

Purpose

This paper presents the experimental and numerical results of the bending properties of low-height prestressed T-beams. The purpose is to study the bearing capacity, failure state and strain distribution of low-height prestressed T-beams.

Design/methodology/approach

First, two 13 m-long full-size test beams were fabricated with different positions of prestressed steel bundles in the span. The load–deflection curves and failure patterns of each test beam were obtained through static load tests. Secondly, the test data were used to validate the finite element model developed to simulate the flexural behavior of low-height prestressed T-beams. Finally, the influence of different parameters (the number of prestressed steel bundles, initial prestress and concrete strength grade) on the flexural performance of the test beams is studied by using a finite element model.

Findings

The test results show that when the distance of the prestressed steel beam from the bottom height of the test beam increases from 40 to 120 mm, the cracking load of the test beam decreases from 550.00 to 450.00 kN, reducing by 18.18%, and the ultimate load decreases from 1338.15 to 1227.66 kN, reducing by 8.26%, therefore, the increase of the height of the prestressed steel beam reduces the bearing capacity of the test beam. The numerical simulation results show that when the number of steel bundles increases from 2 to 9, the cracking load increases by 183.60%, the yield load increases by 117.71% and the ultimate load increases by 132.95%. Therefore, the increase in the number of prestressed steel bundles can increase the cracking load, yield load and ultimate load of the test beam. When the initial prestress is from 695 to 1,395 MPa, the cracking load increases by 69.20%, the yield load of the bottom reinforcement increases by 31.61% and the ultimate load increases by 3.97%. Therefore, increasing the initial prestress can increase the cracking load and yield load of the test beam, but it has little effect on the ultimate load. The strength grade of concrete increases from C30 to C80, the cracking load is about 455.00 kN, the yield load is about 850.00 kN and the ultimate load is increased by 4.90%. Therefore, the improvement in concrete strength grade has little influence on the bearing capacity of the test beam.

Originality/value

Based on the experimental study, the bearing capacity of low-height prestressed T-beams with different prestressed steel beam heights is calculated by finite element simulation, and the influence of different parameters on the bearing capacity is discussed. This method not only ensures the accuracy of bearing capacity assessment, but also does not require a large number of samples and has a certain economy. The study of prestressed low-height T-beams is of great significance for understanding the principle and application of prestressed technology. Research on the mechanical behavior and performance of low-height prestressed T beams can provide a scientific basis and technical support for the design and construction of prestressed concrete structures. In addition, the study of prestressed low-height T-beams can also provide a reference for the optimization design and construction of other structural types.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 December 2021

Long Liu, Lifeng Wang and Ziwang Xiao

Reinforcement of reinforced concrete (RC) beams in-service have always been an important research field, anchoring steel plate in the bottom of the beams is a kind of common…

Abstract

Purpose

Reinforcement of reinforced concrete (RC) beams in-service have always been an important research field, anchoring steel plate in the bottom of the beams is a kind of common reinforcement methods. In actual engineering, the contribution of pavement layer to the bearing capacity of RC beams is often ignored, which underestimates the bearing capacity and stiffness of RC beams to a certain extent. The purpose of this paper is to study the effect of pavement layer on the RC beams before and after reinforcement.

Design/methodology/approach

First, static load experiments are carried out on three in-service RC hollow slab beams, meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Last, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.

Findings

The experimental results showed that pavement layers increase the flexural capacity of hollow slab beams by 16.7%, and contribute to increasing stiffness. Ductility ratio of SPRCB3 and PRCB2 was 30% and 24% lower than that of RCB1, respectively. The results showed that when the steel plate thickness was 1 mm–6 mm, the bearing capacity of the hollow slab beam increased gradually from 2158.0 kN.m to 2656.6 kN.m. As the steel plate thickness continuously increased to 8 mm, the ultimate bearing capacity increased to 2681.0 kN.m. The increased thickness did not cause difference to the bearing capacity, because of concrete crushing at the upper edge.

Originality/value

In this paper, based on the experimental study, the bearing capacity of hollow beam strengthened by steel plate with different thickness is extrapolated by finite element simulation, and its influence on ductility is discussed. This method not only guarantees the accuracy of the bearing capacity evaluation, but also does not require a large number of samples, and has certain economy. The research results provide a basis for the reinforcement design of similar bridges.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 September 2022

Jinliang Liu and Xincheng Su

The effects of failure mode and strain conditions of CFRP, concrete and stirrups on the shear capacity of reinforced beams bonded by geopolymer and epoxy are studied. In addition…

Abstract

Purpose

The effects of failure mode and strain conditions of CFRP, concrete and stirrups on the shear capacity of reinforced beams bonded by geopolymer and epoxy are studied. In addition, a prediction model of the ultimate bearing capacity of CFRP-shear-strengthened beams is proposed, which considers adhesive performance parameters adhesive performance parameter ßE and FRP width parameter ßw.

Design/methodology/approach

This paper presents an experimental study on ultimate bearing capacity of CFRP-shear-strengthened pre-cracked beams with geopolymer and epoxy resin, which considers parameters such as impregnated adhesives types and CFRP-strengthened scheme.

Findings

The failure modes of CFRP-strengthened beams bonded by geopolymer are the combination of the CFRP-concrete interface substrate failure and fracture failure of CFRP, and that of epoxy is the local substrate failures with small area. The ultimate load of CFRP-strengthened beams is directly affected by the failure modes. The ultimate bearing capacity of CFRP-strengthened beams with geopolymer is 91.4% of that of epoxy resin. Compared with ultimate bearing capacity of CFRP-strengthened beams with U-shaped, that of complete-wrapping increases by 2.5%. Moreover, the stirrup peak strain is reduced by more than 30% in CFRP-strengthened beams bonded with geopolymer and epoxy resin in comparison with the unstrengthened beam. The existing prediction model cannot accurately predict the CFRP shear capacity contribution of strengthened beams with different CFRP-strengthened schemes and adhesive properties. The estimated results are much lower than the test data, and the deviation is much larger than 20%.

Originality/value

Geopolymer alternative to epoxy as an adhesive is feasible and effective for CFRP reinforcement. Furthermore, the accuracy is improved by introducing parameters about adhesive properties based on the existing prediction model. The estimated results are in excellent agreement with the test data, and the deviation is controlled within −12.80%, and the model is suitable for predicting the shear capacity of FRP-strengthened beams with ßf = 90° in shear capacity database.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 September 2022

Lifeng Wang, Haiqi Wu, Long Liu and Ziwang Xiao

The application of ultra-high performance concrete (UHPC) in anchorage zones can significantly improve the local compression performance of structures. However, the high cost and…

Abstract

Purpose

The application of ultra-high performance concrete (UHPC) in anchorage zones can significantly improve the local compression performance of structures. However, the high cost and complex preparation of UHPC make UHPC difficult to be widely used in practice. This study proposes a method to strengthen the local compression zone of structures built by normal strength concrete (NSC) by incorporating UHPC cores.

Design/methodology/approach

In this study, a Finite Element Model (FEM) of local compression specimens was established by ABAQUS, and the accuracy of FEM was verified by comparing the FEM calculation results with experimental results. The verified FEM was adapted to the research on the influences of affecting factors on local compression performance of structures, including NSC strength, UHPC strength, spiral steel bar strength, and UHPC core diameter.

Findings

The results show that the peak load of the strengthened specimen SC1-U + N increases by 210.2% compared to that of the SC1-NSC. Furthermore, compared to SC1, the strengthened specimen SC1-U + N can save 64.7% amount of UHPC while the peak load decreases by only 34.4%. The peak load of the strengthened specimens increases with the axial compressive strength and the diameter of UHPC cores increasing, crack load increases with increasing the compressive strength of NSC, the spiral steel bar with high strength can prevent the sharp drop of load-deflection curve and the residual bearing capacity increases accordingly. All findings indicate that increasing the diameter of UHPC cores can improve the overall performance of the specimens. Under loading, all specimens fail by following a similar pattern. The effectiveness of this new strengthen method is also verified by FEM analytical calculations.

Originality/value

Based on the experimental study, this study extrapolates the influence of different parameters on the local bearing capacity of the strengthened specimens by finite element simulation. This method not only ensures the accuracy of bearing capacity assessment, but also does not require many samples, which ensures the economy of the reinforcement process. The research results provide a reference for the reinforcement design of anchorage zone.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 October 2019

Sheng-cai Li and Guo Lin

The purpose of this paper is to study the seismic performance of the energy-saving block and invisible multi-ribbed frame composite walls (EBIMFCW), changing the shear-span ratio…

Abstract

Purpose

The purpose of this paper is to study the seismic performance of the energy-saving block and invisible multi-ribbed frame composite walls (EBIMFCW), changing the shear-span ratio as the test parameter, the low-cycle reciprocating loading tests of six 1/2 scale wall models were carried out.

Design/methodology/approach

The test design method and analysis are used for the seismic performance of the EBIMFCW.

Findings

With the increase of shear-span ratio: the walls tend to occur bending failure even more, the initial stiffness of the wall decreases, the overall ductility of the wall is improved and the walls tend to occur bending failure.

Originality/value

The previous studies do not involve the seismic performance of EBIMFCW under different shear-span ratios. Therefore, the paper studies the hysteresis behavior, ductility, stiffness degradation and energy dissipation performance of EBIMFCW under different shear-span ratios.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 August 2021

Abdelaziz Khennouf and Mohamed Baheddi

The estimation of bearing capacity for shallow foundations in swelling soil is an important and complex context. The complexity is due to the unsaturated swelling soil related to…

Abstract

Purpose

The estimation of bearing capacity for shallow foundations in swelling soil is an important and complex context. The complexity is due to the unsaturated swelling soil related to the drying and humidification environment. Hence, a serious study is needed to evaluate the effect of swelling potential soil on the foundation bearing capacity. The purpose of this paper is to analyze the bearing capacity of a rough square foundation founded on a homogeneous swelling soil mass, subjected to vertical loads.

Design/methodology/approach

A proposed numerical model based on the simulation of the swelling pressure in the initial state, followed by an elastoplastic behavior model may be used to calculate the foundation bearing capacity. The analyses were carried out using the finite-difference software (FLAC 3 D) with an elastic perfectly plastic Mohr–Coulomb constitutive model. Moreover, the numerical results obtained are compared with the analytical solutions proposed in the literature.

Findings

The numerical results were in good agreement with the analytical solutions proposed in the literature. Also, reasonable capacity and performance of the proposed numerical model.

Originality/value

The proposed numerical model is capable to predict the bearing capacity of the homogeneous swelling soil mass loaded by a shallow foundation. Also, it will be of great use for geotechnical engineers and researchers in the field.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 24 November 2022

Zhou Shi, Jiachang Gu, Yongcong Zhou and Ying Zhang

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder…

Abstract

Purpose

This study aims to research the development trend, research status, research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Design/methodology/approach

Based on the investigation and analysis of the development history, structure form, structural parameters, stress characteristics, shear connector stress state, force transmission mechanism, and fatigue performance, aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge, the development trend, research status, research results and existing problems are expounded.

Findings

The shear-compression composite joint has become the main form in practice, featuring shortened length and simplified structure. The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder. The reasonable thickness of the bearing plate is 40–70 mm. The calculation theory and simplified calculation formula of the overall bearing capacity, the nonuniformity and distribution laws of the shear connector, the force transferring ratio of steel and concrete components, the fatigue failure mechanism and structural parameters effects are the focus of the research study.

Originality/value

This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of over 7000