Search results

1 – 10 of 56
Article
Publication date: 17 August 2018

Sadegh Mohajer, Rosna Mat Taha, Minoo Mohajer and Nordiyanah Anuar

This study aims to determine the appropriate irradiation dose for induction of somaclonal variation in mass of unorganized parenchyma cells derived from sainfoin (Onobrychis

Abstract

Purpose

This study aims to determine the appropriate irradiation dose for induction of somaclonal variation in mass of unorganized parenchyma cells derived from sainfoin (Onobrychis viciifolia) tissues.

Design/methodology/approach

To investigate the feasibility of UV-B irradiation (312 nm), seeds and callus of sainfoin were exposed to five different intensities (20-100 per cent) for evaluating the effectiveness of phytochemical constituents and cellular behaviour.

Findings

Although percentage of seed viability reduced in 20 per cent intensity of UV-B irradiation compared with control seeds, the germination speed significantly enhanced from 3.58 to 5.42. The spectrophotometer analysis confirmed that concentrations of chlorophyll (a and b) decreased after UV-B exposure as compared with control callus. Also, carotenoid content showed significant differences among treated calli. Flavonoid and phenolic contents were observed to gradually increase when the non-irradiated callus subjected to 40 and 60 per cent intensities of UV-B irradiation, respectively. Observation on cellular behaviour such as determination of nuclear and cell areas, mitotic index and chromosomal aberrations were also detected to change in different intensities of UV-B irradiation. Fragmented and aneuploidy aberrations were only observed in exposed cells with more than 40 per cent intensity of UV-B irradiation.

Originality/value

In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of UV-B irradiation to induce somaclonal variation in callus tissue of sainfoin.

Details

Pigment & Resin Technology, vol. 47 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 March 2022

Muneeb Ahmad Malik, Yasmeena Jan, Afrozul Haq, Jasmeet Kaur and Bibhu Prasad Panda

The purpose of this study was to optimize the parameters for enhancing the vitamin D2 formation in three edible mushroom varieties, namely, shiitake mushroom (Lentinula edodes)…

Abstract

Purpose

The purpose of this study was to optimize the parameters for enhancing the vitamin D2 formation in three edible mushroom varieties, namely, shiitake mushroom (Lentinula edodes), white button mushroom (Agaricus bisporus) and oyster mushroom (Pleurotus ostreatus) using ultraviolet (UV) irradiation.

Design/methodology/approach

Freshly harvested mushrooms were irradiated with UV-B and UV-C lamps. Further, mushrooms were treated with UV-B at a distance ranging between 10 and 50 cm from the UV light source, for 15–150 min, to maximize the conversion of ergosterol to vitamin D2. Analysis of vitamin D2 content in mushrooms before and after UV exposure was done by high pressure liquid chromatography (HPLC).

Findings

HPLC results showed a significant (p < 0.001) increase in vitamin D2 levels of shiitake (17.3 ± 0.35 µg/g), button (24.9 ± 0.71 µg/g) and oyster (19.1 ± 0.35 µg/g) mushrooms, irradiated with UV-B at a distance of 20–30 cm for 120 min. Further, stability studies revealed that vitamin D2 levels in UV-B-irradiated mushrooms gradually increased for 48 and 72 h of storage at room and refrigeration temperatures, respectively. During cooking operations, 62%–93% of vitamin D2 was retained in UV-B-irradiated mushrooms.

Originality/value

This study describes the most effective parameters such as ideal wavelength, mushrooms size, duration of exposure and distance from UV sources for maximum vitamin D2 formation in edible mushrooms using UV irradiation. Further, assessment of vitamin D2 stability in UV exposed mushrooms during storage period and cooking operations has been carried out. In addition, this study also provides a comparison of the vitamin D2 levels of the three widely cultivated and consumed mushroom varieties treated simultaneously under similar UV exposure conditions.

Details

Nutrition & Food Science, vol. 52 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 17 May 2013

N.A. Mat Nor, N. Aziz, A.F. Mohd‐Adnan, R.M. Taha and A.K. Arof

The purpose of this paper is to evaluate the potential of natural colourants from fruits of Ixora siamensis for coating applications, to study its glossiness and effectiveness…

Abstract

Purpose

The purpose of this paper is to evaluate the potential of natural colourants from fruits of Ixora siamensis for coating applications, to study its glossiness and effectiveness against UV‐B irradiation.

Design/methodology/approach

In this study, natural colourants from the fruits of Ixora siamensis were extracted using trifluoroacetic acid‐methanol solution. Anthocyanins and organic acid variants were mixed together to form co‐pigments. Different concentrations of ferulic and gallic acid co‐pigments were added to a blended solution of poly (vinyl alcohol), PVA and anthocyanin (from Ixora siamensis) to form a coating system. The coatings were exposed to UV‐B irradiation at room temperature in air using a UV‐lamp which emitted radiation at 312 nm. The effects of UV‐B irradiation on the coating system were evaluated using glossiness test and UV‐visible spectroscopy.

Findings

Anthocyanins are unstable and can quickly lose their colour. One of the methods of preserving the stability of these pigments is by co‐pigmentation. Co‐pigmentation of anthocyanin with organic acid variants resulted in an increase in both hyperchromic effects (ΔA) and bathochromic shifts (Δλ). In this study, ferulic acids yielded better results compared to gallic acids.

Research limitations/implications

Samples with co‐pigmentation give better result compared to the untreated samples. The addition of 0.5 and 1.0 per cent ferulic acid improves the gloss properties and resistivity of the samples towards the UV irradiation. Thus, in order to study the effectiveness of ferulic acid as additive and improving the properties of the samples, the percentage of ferulic acid added and exposure time could be increased.

Practical implications

The method developed provided a simple and efficient solution for improving the UV resistance of anthocyanin blend with poly (vinyl alcohol), PVA UV absorber. Effect of ferulic acid as UV absorber, if added in more concentration, can be further studied for optimization.

Social implications

The social implication is the use of local plant species as a low cost source of natural pigments in coating system.

Originality/value

The method for improving the resistance towards UV irradiation of anthocyanin blend with poly (vinyl alcohol), PVA was novel and could find numerous applications for natural product based on plant pigment.

Article
Publication date: 8 August 2018

Noraini Mahmad and R.M. Taha

The purpose of this study is to investigate the effects of pH, UV-B radiation and NaCl on anthocyanin extracted from vivid blue petals of Clitoria ternatea L. (legume crop), as a…

Abstract

Purpose

The purpose of this study is to investigate the effects of pH, UV-B radiation and NaCl on anthocyanin extracted from vivid blue petals of Clitoria ternatea L. (legume crop), as a potential natural colourant for food, dye or coating technology.

Design/methodology/approach

The anthocyanin from petals of Clitoria ternatea was extracted using 0.5 per cent trifluroacetic (TFA) in methanol solution. The liquid colourant was exposed to different pH (1, 4.5 and 5.5), UV-B radiation and sodium chloride (NaCl). The results were compared using UV-vis spectrophotometric analysis.

Findings

Anthocyanins are sensitive and quickly degrade in the presence of light. In the dry powder form, the anthocyanin is easier to maintain and preserve (storage).

Research limitations/implications

Anthocyanins extracted from vivid blue petals of Clitoria ternatea L. are sensitive and quickly degrade in the presence of light.

Practical implications

The anthocyanin pigments extracted from Clitoria ternatea L. petals with methanolic acid were successfully coated on glass slides. The combination of binders and pigments had produced environmental paint which added with stabilisers (additives) for better durability. Acrylic has been known for its high weathering and embrittlement resistance, good mechanical and electrochemical properties and gloss retention.

Social implications

This anthocyanin is suitable as natural colourant especially in baby products, cosmetics production or for coating and varnish application.

Originality/value

Till date, the natural colourant of Clitoria ternatea L. petals is widely used in food. However, this result is a new finding, as there is no report on the potential of applications of this natural colourant for coating technology. Therefore, the current study with appropriate extraction method was significantly based on the relevant literatures of coating production from pigment by using other plant species. The findings and conclusion highlight the practicality as the potential applications in coating technology.

Details

Pigment & Resin Technology, vol. 47 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 1988

C. Lea

The flux residues on almost all soldered printed circuit boards are removed using the chlorofluorocarbon (CFC) 113. In just one year's time production of this solvent will almost…

Abstract

The flux residues on almost all soldered printed circuit boards are removed using the chlorofluorocarbon (CFC) 113. In just one year's time production of this solvent will almost certainly be curtailed, on a scale agreed internationally. This is a major issue that needs to be addressed urgently by the electronics assembly industry worldwide. This paper presents (i) the background that has led to the restrictions being placed on production and consumption of solvent 113, (ii) the international agreement and timetable for the implementation of the restrictions and (iii) the perceived opportunities that are available to the electronics assembly industry to meet this challenge.

Details

Circuit World, vol. 14 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 25 July 2022

Tuba Kavas Akarca, Merve Karayol and Isinay E. Yuzay

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its…

Abstract

Purpose

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its suitability for use in packaging applications.

Design/methodology/approach

Different loading levels (1 and 5 Wt.%) of precipitated silica or kaolin particles were incorporated into NC/acrylic-based coating formulations and applied on low-density polyethylene (LDPE) films. The coatings and coated LDPE films were characterized in terms of structural, physical, mechanical, thermal, optical, surface, morphological and water vapor barrier properties.

Findings

The glossiness of the coating formulations decreased by increasing the precipitated silica and kaolin content. The incorporation of kaolin (1 and 5 Wt.%) and precipitated silica (1 Wt.%) had no significant effect on the melting temperature of LDPE film; however, with the addition of 5 Wt.% precipitated silica, the melting and crystallization temperatures were significantly changed. The incorporation of 5 Wt.% precipitated silica and kaolin also enhanced the water vapor barrier properties of LDPE films. The light transmittance declined with the precipitated silica and kaolin addition, especially in the ultraviolet (UV)-A/UV-B spectrum regions indicating an excellent UV light protection.

Originality/value

It was concluded that NC/acrylic resins coatings containing precipitated silica and kaolin exhibit improved thermal stability, UV and water vapor barrier properties and have the potential for use in packaging applications.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2023

Amirul Syafiq, Lilik Jamilatul Awalin, Syukri Ali and Mohd Arif

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create…

Abstract

Purpose

The paper aims to design the optimum formulation of the nano-titanium dioxide (TiO2) hydrophilic coating system using the synthetic polypropylene glycol (PPG), which can create the reflection and absorption property.

Design/methodology/approach

TiO2 nanoparticles are used as fillers, and PPG has been blended at the proper ratio of 1PPG: 0.2TiO2. The prepared resin has been applied onto the glass substrate at different numbers of glass immersions during the dip-coating fabrication process. One-time glass immersion is labeled as T1 coating, two-time glass immersion is labeled as T2 coating and three-time glass immersion is labeled as T3 coating. All the prepared coating systems were left dry at ambient temperature.

Findings

T3 coating showed the lowest reading of WCA value at 40.50°, due to higher surface energy at 61.73 mN/m. The T3 coating also shows the greatest absorbance property among the prepared coating systems among the prepared coating. In terms of reflectance property, the T2 coating system has great reflectance in UV region and near-infrared region, which is 16.47% and 2.77 and 2.73%, respectively. The T2 coating also has great optical transmission about 75.00% at the visible region.

Research limitations/implications

The development of thermal insulation coating by studying the relationship between convection heat and reflectance at different wavelengths of incident light.

Practical implications

The developed coating shows high potential for glass window application.

Originality/value

The application of the hydrophilic coating on light absorption, reflectance and transmission at different wavelengths.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2015

S.V. Lee, A.N. Hadi, Z.H.Z. Zainal Abidin, N.A. Mazni, N.A. Halim, R. Usop, H.C. Hassan, S.R. Majid and A.K. Arof

The purpose of this paper is to observe the colour and thermal stability of natural red dye consisting of anthocyanin with addition of different aqueous acids and applied as…

Abstract

Purpose

The purpose of this paper is to observe the colour and thermal stability of natural red dye consisting of anthocyanin with addition of different aqueous acids and applied as coating films.

Design/methodology/approach

The natural red dye was extracted from Hibiscus sabdariffa L. (roselle) flowers and mixed with 1 per cent hydrochloric acid, 5 per cent acetic acid, 5 per cent citric acid and 5 per cent oxalic acid. All the dye samples were exposed to heat and UV-B to observe the colour stability by calculating the half-life and rate of reaction. In coating film application, each of the dye samples was mixed with 25 wt% of poly(vinyl alcohol) (PVA) and applied on to a glass substrate. The coating samples’ colour stability was observed by using CIE L*a*b* colour space coordinates. The coating films’ weight loss stability against temperature was observed by using thermogravimetric analysis.

Findings

Addition of hydrochloric acid enhances the thermal and UV stability of the anthocyanin natural dye. This can be observed from the calculation of the half-life of the dye. The half-life values for the thermal and UV stability studies were 1,155 hours and 210 hours, respectively. In coating films, the sample with addition of acetic acid showed the highest colour stability with colour difference (ΔE*) value 8.95.

Research limitations/implications

The coating films developed in this work are not suitable to be applied on metal substrates due to the presence of water, which can contribute to the corrosion formation.

Practical implications

The coating films developed in this work are suitable for washable coating application. In other words, they are non-permanent coatings applied on a glass substrate.

Originality/value

Development of water-based coatings from PVA binder with anthocyanin colourant is introduced in this study.

Details

Pigment & Resin Technology, vol. 44 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2001

Åke Strid and Mikael Brosché

Discusses the responses of plants to a variety of environmental stresses and considers different techniques that could potentially be used to detect and amplify such responses…

744

Abstract

Discusses the responses of plants to a variety of environmental stresses and considers different techniques that could potentially be used to detect and amplify such responses. Because plants may naturally produce steroids in response to raised stress levels, the paper suggests that genetic modification of crop plants to improve resistance to stress is worth investigating as a strategy. Sensitive to public concerns about the safety of transgenic crops, the authors suggest using such plants in carefully controlled locations.

Details

British Food Journal, vol. 103 no. 11
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 28 October 2014

K. Vellingiri, T. Ramachandran and P. Senthilkumar

Any change in physical performance of the fibre corresponds to a change in its molecular structure. Basically polyester is hydrophobic in nature due to the absence of attracting…

Abstract

Purpose

Any change in physical performance of the fibre corresponds to a change in its molecular structure. Basically polyester is hydrophobic in nature due to the absence of attracting polar groups and the dense packing in its polymeric structure. Due to the dense packing in polymeric structure and lack of hydroxyl groups of polyester it does not absorb water hence breathability is poor. The possibility of using air and oxygen plasma treatments for fibre surface activation to facilitate the improvement of hydrophilicity is attempted and has been improved. The purpose of this paper is to study the possibility of engineering the multifunctional of fabrics.

Design/methodology/approach

The treated fabric is evaluated through measuring the ultraviolet protection factor, thermal resistance, and antibacterial activity properties. Scanning electron microscopy and transmission electron microscopy graphs show deposition of nano particles (NPs) of Chitosan, TiO2 and ZnO onto the fibre after washing several times.

Findings

Air plasma-nano Chitosan treatment affects positively the antibacterial activity, thermal resistance of the fibre and air plasma-nano TiO2 and ZnO the fibre protection against ultraviolet rays. Furthermore, the plasma treatment solves an environmental problem which offers safe production process and working place and decreases the unit cost.

Originality/Value

The authors are confident that textiles will adopt this technology in the future.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 56