Search results

1 – 10 of over 11000
Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 October 2022

Astha Sharma, Dinesh Kumar and Navneet Arora

The purpose of the present work is to improve the industry performance by identifying and quantifying the risks faced by the Indian pharmaceutical industry (IPI). The risk values…

Abstract

Purpose

The purpose of the present work is to improve the industry performance by identifying and quantifying the risks faced by the Indian pharmaceutical industry (IPI). The risk values for the prominent risks and overall industry are determined based on the four risk parameters, which would help determine the most contributive risks for mitigation.

Design/methodology/approach

An extensive literature survey was done to identify the risks, which were also validated by industry experts. The finalized risks were then evaluated using the fuzzy synthetic evaluation (FSE) method, which is the most suitable approach for the risk assessment with parameters having a set of different risk levels.

Findings

The three most contributive sub-risks are counterfeit drugs, demand fluctuations and loss of customers due to partners' poor service performance, while the main risks obtained are demand, financial and logistics. Also, the overall risk value indicates that the industry faces medium to high risk.

Practical implications

The study identifies the critical risks which need to be mitigated for an efficient industry. The industry is most vulnerable to the demand risk category. Therefore, the managers should minimize this risk by mitigating its sub-risks, like demand fluctuations, bullwhip effect, etc. Another critical sub-risk, the counterfeit risk, should be managed by adopting advanced technologies like blockchain, artificial intelligence, etc.

Originality/value

There is insufficient literature focusing on risk quantification. Therefore, this work addresses this gap and obtains the industry's most critical risks. It also discusses suitable mitigation strategies for better industry performance.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 1
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2024

Mahmoud Taban and Alireza Basohbat Novinzadeh

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of…

Abstract

Purpose

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of the non-actuator method for guiding the projectile to the target. In this method, biologically inspired by the flying concept of the single-winged seed, for instance, that of maple and ash trees, the projectile undergoes a helical motion to scan the region and meet the target in the descent phase. Indeed, the projectile is a decelerator device based on the autorotation flight while it attempts to resemble the seed’s motion using two wings of different spans. There exists a wealth of studies on the stability of the decelerators (e.g. the mono-wing, samara and pararotor), but all of them have assumed the body (exclusive of the wing) to be symmetric and paid no particular attention to the scanning quality of the region. In practice, however, the non-actuator-guided projectiles are asymmetric owing to the presence of detection sensors. This paper aims to present an analytical solution for stability analysis of asymmetric decelerators and apprise the effects of design parameters to improve the scanning quality.

Design/methodology/approach

The approach of this study is to develop a theoretical model consisting of Euler equations and apply a set of non-dimensionalized equations to reduce the number of involved parameters. The obtained governing equations are readily applicable to other decelerator devices, such as the mono-wing, samara and pararotor.

Findings

The results show that the stability of the body can be preserved under certain conditions. Moreover, pertinent conclusions are outlined on the sensitivity of flight behavior to the variation of design parameters.

Originality/value

The analytical solution and sensitivity analysis presented here can efficiently reduce the design cost of the asymmetric decelerator.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 5 April 2024

Taining Wang and Daniel J. Henderson

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production…

Abstract

A semiparametric stochastic frontier model is proposed for panel data, incorporating several flexible features. First, a constant elasticity of substitution (CES) production frontier is considered without log-transformation to prevent induced non-negligible estimation bias. Second, the model flexibility is improved via semiparameterization, where the technology is an unknown function of a set of environment variables. The technology function accounts for latent heterogeneity across individual units, which can be freely correlated with inputs, environment variables, and/or inefficiency determinants. Furthermore, the technology function incorporates a single-index structure to circumvent the curse of dimensionality. Third, distributional assumptions are eschewed on both stochastic noise and inefficiency for model identification. Instead, only the conditional mean of the inefficiency is assumed, which depends on related determinants with a wide range of choice, via a positive parametric function. As a result, technical efficiency is constructed without relying on an assumed distribution on composite error. The model provides flexible structures on both the production frontier and inefficiency, thereby alleviating the risk of model misspecification in production and efficiency analysis. The estimator involves a series based nonlinear least squares estimation for the unknown parameters and a kernel based local estimation for the technology function. Promising finite-sample performance is demonstrated through simulations, and the model is applied to investigate productive efficiency among OECD countries from 1970–2019.

Open Access
Article
Publication date: 19 April 2024

Bong-Gyu Jang and Hyeng Keun Koo

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components…

Abstract

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components: the price of a European put option and the premium associated with the early exercise privilege. Our analysis demonstrates that, under these conditions, the perpetual put option consistently commands a higher price during periods of high volatility compared to those of low volatility. Moreover, we establish that the optimal exercise boundary is lower in high-volatility regimes than in low-volatility regimes. Additionally, we develop an analytical framework to describe American puts with an Erlang-distributed random-time horizon, which allows us to propose a numerical technique for approximating the value of American puts with finite expiry. We also show that a combined approach involving randomization and Richardson extrapolation can be a robust numerical algorithm for estimating American put prices with finite expiry.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1229-988X

Keywords

Article
Publication date: 19 July 2022

Xuejiao Zhang, Yu Yang and Jing Wang

This paper aims to develop a dynamic two-sided stable matching method based on preference information of the matching objects in uncertain environments, so as to solve the…

Abstract

Purpose

This paper aims to develop a dynamic two-sided stable matching method based on preference information of the matching objects in uncertain environments, so as to solve the matching problem of cloud manufacturing tasks and services with load balancing.

Design/methodology/approach

For dynamic two-sided matching, due to the complexity of social environment and the limitation of human cognition, hesitation and fuzziness always exist in the process of multi-criteria assessment. First, in order to obtain the accurate preference information of each matching object, uncertain linguistic variables, uncertain preference ordinal and incomplete complementary matrices are used to evaluate multi-criteria preference information. This process is undertaken by considering the probability of each possible matching pair. Second, the preference information at different times is integrated by using the time-series weight to obtain the comprehensive satisfaction degree matrices of the matching objects. Further, the load adjustment parameter is used to increase the satisfaction degree of the matching objects. Afterward, a dynamic two-sided stable matching optimization model is constructed by considering stable matching conditions. The model aims to maximize the satisfaction degree and minimizes the difference in the satisfaction degree of matching objects. The optimal stable matching results can be obtained by solving the optimization model. Finally, a numerical example and comparative analysis are presented to demonstrate the characteristics of the proposed method.

Findings

Uncertain linguistic variables, uncertain preference orders and incomplete complementary matrices are used to describe multi-criteria preference information of the matching objects in uncertain environments. A dynamic two-sided stable matching method is proposed, based on which a DTSMDM (dynamic two-sided matching decision-making) model of cloud manufacturing with load balancing can be constructed. The study proved that the authors can use the proposed method to obtain stable matching pairs and higher matching objective value through comparative analysis and the sensitivity analysis.

Originality/value

A new method for the two-sided matching decision-making problem of cloud manufacturing with load balancing is proposed in this paper, which allows the matching objects to elicit language evaluation under uncertain environment more flexibly to implement dynamic two-sided matching based on preference information at different times. This method is suitable for dealing with a variety of TSMDM (two-sided matching decision-making) problems.

Details

Kybernetes, vol. 52 no. 11
Type: Research Article
ISSN: 0368-492X

Keywords

Book part
Publication date: 5 April 2024

Feng Yao, Qinling Lu, Yiguo Sun and Junsen Zhang

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the…

Abstract

The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the varying coefficients by a series method. We then use the pilot estimates to perform a one-step backfitting through local linear kernel smoothing, which is shown to be oracle efficient in the sense of being asymptotically equivalent to the estimate knowing the other components of the varying coefficients. In both steps, the authors remove the fixed effects through properly constructed weights. The authors obtain the asymptotic properties of both the pilot and efficient estimators. The Monte Carlo simulations show that the proposed estimator performs well. The authors illustrate their applicability by estimating a varying coefficient production frontier using a panel data, without assuming distributions of the efficiency and error terms.

Details

Essays in Honor of Subal Kumbhakar
Type: Book
ISBN: 978-1-83797-874-8

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 April 2024

Emir Malikov, Shunan Zhao and Jingfang Zhang

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework…

Abstract

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework for structurally identifying production functions to a more general case when latent firm productivity is multi-dimensional, with both factor-neutral and (biased) factor-augmenting components. Unlike alternative methodologies, the proposed model can be identified under weaker data requirements, notably, without relying on the typically unavailable cross-sectional variation in input prices for instrumentation. When markets are perfectly competitive, point identification is achieved by leveraging the information contained in static optimality conditions, effectively adopting a system-of-equations approach. It is also shown how one can partially identify the non-neutral production technology in the traditional proxy variable framework when firms have market power.

1 – 10 of over 11000