Search results

1 – 10 of 93
Article
Publication date: 14 October 2022

Fernando Antonio Moala and Karlla Delalibera Chagas

The step-stress accelerated test is the most appropriate statistical method to obtain information about the reliability of new products faster than would be possible if the…

Abstract

Purpose

The step-stress accelerated test is the most appropriate statistical method to obtain information about the reliability of new products faster than would be possible if the product was left to fail in normal use. This paper presents the multiple step-stress accelerated life test using type-II censored data and assuming a cumulative exposure model. The authors propose a Bayesian inference with the lifetimes of test item under gamma distribution. The choice of the loss function is an essential part in the Bayesian estimation problems. Therefore, the Bayesian estimators for the parameters are obtained based on different loss functions and a comparison with the usual maximum likelihood (MLE) approach is carried out. Finally, an example is presented to illustrate the proposed procedure in this paper.

Design/methodology/approach

A Bayesian inference is performed and the parameter estimators are obtained under symmetric and asymmetric loss functions. A sensitivity analysis of these Bayes and MLE estimators are presented by Monte Carlo simulation to verify if the Bayesian analysis is performed better.

Findings

The authors demonstrated that Bayesian estimators give better results than MLE with respect to MSE and bias. The authors also consider three types of loss functions and they show that the most dominant estimator that had the smallest MSE and bias is the Bayesian under general entropy loss function followed closely by the Linex loss function. In this case, the use of a symmetric loss function as the SELF is inappropriate for the SSALT mainly with small data.

Originality/value

Most of papers proposed in the literature present the estimation of SSALT through the MLE. In this paper, the authors developed a Bayesian analysis for the SSALT and discuss the procedures to obtain the Bayes estimators under symmetric and asymmetric loss functions. The choice of the loss function is an essential part in the Bayesian estimation problems.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 30 January 2009

Hare Krishna and Manish Malik

This paper seeks to focus on the study and estimation of reliability characteristics of Maxwell distribution under Type‐II censoring scheme.

Abstract

Purpose

This paper seeks to focus on the study and estimation of reliability characteristics of Maxwell distribution under Type‐II censoring scheme.

Design/methodology/approach

Maximum likelihood estimation and Bayes estimation methods have been used for the estimation of reliability characteristics. Monte‐Carlo simulation is used to compare the efficiency of the estimates developed by these estimation methods.

Findings

With prior information on the parameter of Maxwell distribution, Bayes estimation provides better estimates of reliability characteristics; otherwise Maximum likelihood estimation is good enough to use for reliability practitioners.

Practical implications

When items are costly, Type‐II censoring scheme can be used to save the cost of the experiment and the discussed methods provide the means to estimate the reliability characteristics of the proposed lifetime model under this scheme.

Originality/value

The study is useful for researchers and practitioners in reliability theory and also for scientists in physics and chemistry, where Maxwell distribution is widely used.

Details

International Journal of Quality & Reliability Management, vol. 26 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 13 December 2022

Jimut Bahan Chakrabarty, Soumya Roy and Shovan Chowdhury

In order to reduce avoidably lengthy duration required to test highly reliable products under usage stress, accelerated life test sampling plans (ALTSPs) are employed. This paper…

Abstract

Purpose

In order to reduce avoidably lengthy duration required to test highly reliable products under usage stress, accelerated life test sampling plans (ALTSPs) are employed. This paper aims to build a decision model for obtaining optimal sampling plan under accelerated life test setting using Type-I hybrid censoring scheme for products covered under warranty.

Design/methodology/approach

The primary decision model proposed in this paper determines ALTSP by minimizing the relevant costs involved. To arrive at the decision model, the Fisher information matrix for Type-I hybrid censoring scheme under accelerated life test setting is derived. The optimal solution is attained by utilizing appropriate techniques following a nonlinear constrained optimization approach. As a special case, ALTSP for Type-I censoring is obtained using the same approach. ALTSP under Type-I hybrid censoring using the variance minimization approach is also derived.

Findings

On comparing the optimal results obtained using the above mentioned approaches, it is found that the cost minimization approach does better in reducing the total cost incurred. Results also show that the proposed ALTSP model under cost function setting has considerably lower expected testing time. Interesting findings from the sensitivity analysis conducted using a newly introduced failure dataset pertaining to locomotive controls are highlighted.

Originality/value

The research introduces a model to design optimum ALTSP for Type-I hybrid censoring scheme. The practical viability of the model makes it valuable for real-life situations. The practical application of the proposed model is exemplified using a real-life case.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 July 1996

Y.I. Kwon

Proposes Bayesian life test sampling plan for non‐repairable products with exponential lifetime distribution, which are sold under a warranty policy. It is assumed that the…

641

Abstract

Proposes Bayesian life test sampling plan for non‐repairable products with exponential lifetime distribution, which are sold under a warranty policy. It is assumed that the parameter of the lifetime distribution is a random variable varying from lot to lot according to a known prior distribution. Describes constructions of a cost model with three cost components: test cost, accept cost, and reject cost. Presents an algorithm for finding optimal sampling plans which minimize the expected average cost per lot. Describes sensitivity analyses for the parameters for the prior distribution.

Details

International Journal of Quality & Reliability Management, vol. 13 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 August 2014

Loganathan Appaia, Padmanaban Muthu Krishnan and Sankaran Kalaiselvi

– The purpose of this paper is the determination of reliability sampling plans in the Bayesian approach assuming that the lifetime distribution is exponential.

Abstract

Purpose

The purpose of this paper is the determination of reliability sampling plans in the Bayesian approach assuming that the lifetime distribution is exponential.

Design/methodology/approach

Sampling plans are used in manufacturing companies as a tool for carrying out sampling inspections, in order to make decisions about the disposition of many finished products. If the quality characteristic is considered as the lifetime of the products, the plan is known as a reliability sampling plan. In life testing, censoring schemes are adopted in order to save time and cost of life test. The inverted gamma distribution is employed as the natural conjugate prior to the average lifetime of the products. The sampling plans are developed assuming various probability distributions to the lifetime of the products.

Findings

The optimum plans n and c are obtained for some sets of values of (p1, a, p2, ß). The selection of sampling plans is illustrated through numerical examples.

Originality/value

Results obtained in this paper are original and the study has been done for the first time in this regard. Reliability sampling plans are essential for making decisions either to accept or reject based on the inspection of the sample.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 December 2021

Ayten Yiğiter, Canan Hamurkaroğlu and Nazan Danacıoğlu

Acceptance sampling plans are a decision-making process on the basis of a randomly selected sampling from a party, where it is not possible to completely scan the products for…

Abstract

Purpose

Acceptance sampling plans are a decision-making process on the basis of a randomly selected sampling from a party, where it is not possible to completely scan the products for reasons such as time and cost being limited or the formation of damaged products during the inspection. For some products, the life span (time from beginning to failure) may be an important quality characteristic. In this case, the quality control adequacy of the products can be checked with an acceptance sampling plan based on the truncated life test with a censored scheme for the lifetime of the products. In this study, group acceptance sampling plans (GASPs) based on life tests are studied under the Type-I censored scheme for the compound Weibull-exponential (CWE) distribution.

Design/methodology/approach

GASPs based on life tests under the Type-I censored scheme for the CWE distribution are developed by using both the producer's risk and the consumer's risk.

Findings

In this study, optimum sample size, optimum number of groups and acceptance number are obtained under the Type-I censored scheme for the CWE distribution. Real data set illustration is given to show GASPs how to be used for the industry applications.

Originality/value

Different from acceptance sampling plans with just considering the producer's risk, GASPs are constructed by using two-point approach included both the producer's risk and the consumer's risk for CWE distribution.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 February 2014

D.R. Barot and M.N. Patel

This paper aims to deal with the estimation of the empirical Bayesian exact confidence limits of reliability indexes of a cold standby series system with (n+k−1) units under the…

Abstract

Purpose

This paper aims to deal with the estimation of the empirical Bayesian exact confidence limits of reliability indexes of a cold standby series system with (n+k−1) units under the general progressive Type II censoring scheme.

Design/methodology/approach

Assuming that the lifetime of each unit in the system is identical and independent random variable with exponential distribution, the exact confidence limits of the reliability indexes are derived by using an empirical Bayes approach when an exponential prior distribution of the failure rate parameter is considered. The accuracy of these confidence limits is examined in terms of their coverage probabilities by means of Monte-Carlo simulations.

Findings

The simulation results show that accuracy of exact confidence limits of reliability indexes of a cold standby series system is efficient. Therefore, this approach is good enough to use for reliability practitioners in order to improve the system reliability.

Practical implications

When items are costly, the general progressive Type II censoring scheme is used to reduce the total test time and the associated cost of an experiment. The proposed method provides the means to estimate the exact confidence limits of reliability indexes of the proposed cold standby series system under this scheme.

Originality/value

The application of the proposed technique will help the reliability engineers/managers/system engineers in various industrial and other setups where a cold standby series system is widely used.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 August 2001

Kuo‐Ching Chiou and Lee‐Ing Tong

Reliability engineers must not only consider the consumption of energy, capital and material resources, but also seek more economic means of completing experiments effectively…

3833

Abstract

Reliability engineers must not only consider the consumption of energy, capital and material resources, but also seek more economic means of completing experiments effectively. This study derives formulae for computing ratios of expected type‐II censoring times and expected complete sampling times when the lifetime adheres to two‐parameter Pareto and Rayleigh distributions. Utilizing such formulae allows the construction of tables providing information about how much experiment time can be saved by employing a type‐II censoring plan instead of a complete sampling plan. Engineers can employ the proposed tables to determine the censoring number, the initial sample size and the other relevant parameters for reducing the total experiment time. Illustrative examples demonstrate the effectiveness of the proposed procedure.

Details

International Journal of Quality & Reliability Management, vol. 18 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 November 2022

Hanieh Panahi

The study based on the estimation of the stress–strength reliability parameter plays a vital role in showing system efficiency. In this paper, considering independent strength and…

Abstract

Purpose

The study based on the estimation of the stress–strength reliability parameter plays a vital role in showing system efficiency. In this paper, considering independent strength and stress random variables distributed as inverted exponentiated Rayleigh model, the author have developed estimation procedures for the stress–strength reliability parameter R = P(X>Y) under Type II hybrid censored samples.

Design/methodology/approach

The maximum likelihood and Bayesian estimates of R based on Type II hybrid censored samples are evaluated. Because there is no closed form for the Bayes estimate, the author use the Metropolis–Hastings algorithm to obtain approximate Bayes estimate of the reliability parameter. Furthermore, the author construct the asymptotic confidence interval, bootstrap confidence interval and highest posterior density (HPD) credible interval for R. The Monte Carlo simulation study has been conducted to compare the performance of various proposed point and interval estimators. Finally, the validity of the stress–strength reliability model is demonstrated via a practical case.

Findings

The performance of various point and interval estimators is compared via the simulation study. Among all proposed estimators, Bayes estimators using MHG algorithm show minimum MSE for all considered censoring schemes. Furthermore, the real data analysis indicates that the splashing diameter decreases with the increase of MPa under different hybrid censored samples.

Originality/value

The frequentist and Bayesian methods are developed to estimate the associated parameters of the reliability model under the hybrid censored inverted exponentiated Rayleigh distribution. The application of the proposed stress–strength reliability model will help the reliability engineers and also other scientists to estimate the system reliability.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 20 January 2023

Sakshi Soni, Ashish Kumar Shukla and Kapil Kumar

This article aims to develop procedures for estimation and prediction in case of Type-I hybrid censored samples drawn from a two-parameter generalized half-logistic distribution…

Abstract

Purpose

This article aims to develop procedures for estimation and prediction in case of Type-I hybrid censored samples drawn from a two-parameter generalized half-logistic distribution (GHLD).

Design/methodology/approach

The GHLD is a versatile model which is useful in lifetime modelling. Also, hybrid censoring is a time and cost-effective censoring scheme which is widely used in the literature. The authors derive the maximum likelihood estimates, the maximum product of spacing estimates and Bayes estimates with squared error loss function for the unknown parameters, reliability function and stress-strength reliability. The Bayesian estimation is performed under an informative prior set-up using the “importance sampling technique”. Afterwards, we discuss the Bayesian prediction problem under one and two-sample frameworks and obtain the predictive estimates and intervals with corresponding average interval lengths. Applications of the developed theory are illustrated with the help of two real data sets.

Findings

The performances of these estimates and prediction methods are examined under Type-I hybrid censoring scheme with different combinations of sample sizes and time points using Monte Carlo simulation techniques. The simulation results show that the developed estimates are quite satisfactory. Bayes estimates and predictive intervals estimate the reliability characteristics efficiently.

Originality/value

The proposed methodology may be used to estimate future observations when the available data are Type-I hybrid censored. This study would help in estimating and predicting the mission time as well as stress-strength reliability when the data are censored.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 9
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 93