Search results

1 – 10 of 221
Article
Publication date: 1 March 2005

Vadim V. Yakovlev, Ethan K. Murphy and E. Eugene Eves

To outline different versions of a novel method for accurate and efficient determining the dielectric properties of arbitrarily shaped materials.

Abstract

Purpose

To outline different versions of a novel method for accurate and efficient determining the dielectric properties of arbitrarily shaped materials.

Design/methodology/approach

Complex permittivity is found using an artificial neural network procedure designed to control a 3D FDTD computation of S‐parameters and to process their measurements. Network architectures are based on multilayer perceptron and radial basis function nets. The one‐port solution deals with the simulated and measured frequency responses of the reflection coefficient while the two‐port approach exploits the real and imaginary parts of the reflection and transmission coefficients at the frequency of interest.

Findings

High accuracy of permittivity reconstruction is demonstrated by numerical and experimental testing for dielectric samples of different configuration.

Research limitations/implications

Dielectric constant and the loss factor of the studied material should be within the ranges of corresponding parameters associated with the database used for the network training. The computer model must be highly adequate to the employed experimental fixture.

Practical implications

The method is cavity‐independent and applicable to the sample/fixture of arbitrary configuration provided that the geometry is adequately represented in the model. The two‐port version is capable of handling frequency‐dependent media parameters. For materials which can take some predefined form computational cost of the method is very insignificant.

Originality/value

A full‐wave 3D FDTD modeling tool and the controlling neural network procedure involved in the proposed approach allow for much flexibility in practical implementation of the method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Zhang Xian, Yang Qingxin, Chen Haiyan, Zhang Xin, Jin Liang and Li Yang

The purpose of the paper is to show that how a contactless power transmission system via electromagnetic (EM) resonantly coupling power transmission (RCPT) technology may be…

Abstract

Purpose

The purpose of the paper is to show that how a contactless power transmission system via electromagnetic (EM) resonantly coupling power transmission (RCPT) technology may be analyzed in-depth by using a detailed T-type two-port network model with leakage inductance variable.

Design/methodology/approach

Through the introduction of coupling coefficient and quality factor, the influence of different physical parameters on the system performance is taken into consideration and validated by power transmission experiment.

Findings

It is shown that system performance is mainly subject to coupling coefficient and quality factor from the two-port network model in this paper. Moreover, there are three working status of dynamic transmission, which are over coupling, critical coupling and under coupling.

Originality/value

Two-port network model applied to practical RCPT system design considering impedance loss on resonators, etc.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Dejan V. Tošić and Marija F. Hribšek

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to…

Abstract

Purpose

The purpose of this paper is to model multilayer structure surface acoustic wave (SAW) sensors, incorporated in CMOS or micro‐electro‐mechanical system integrated circuits, and to derive the corresponding wave velocity as an analytic expression in terms of the layers‘ thickness and density, which is suitable for analysis and design.

Design/methodology/approach

The method is based on an electro‐mechanical equivalent model of multilayer structure SAW sensors. A multilayered SAW device is represented by a two‐port electrical equivalent circuit consisting of three parts: input transducer, output transducer, and between them the delay line, which is the sensing part. The sensing part is modelled as a mechanical two‐port network. The wave velocity is calculated using analogy between the mechanical and electrical quantities and the fact that the wave motion of the SAW extends below the surface to a depth of about one wavelength.

Findings

The presented model predicts very efficiently and accurately the velocity of SAW sensors with multilayer substrates in the case where the thicknesses of upper layers are much smaller than the signal wavelength. The velocity can be calculated from the formula, so that elaborate numerical computations involving partial differential equations are avoided.

Research limitations/implications

The model and the velocity calculation can be applied only to acoustically thin upper and middle layers where acoustically thin means that a layer is sufficiently thin and rigid (large shear modulus). The presented results provide a starting‐point for further research in the analysis and design of sensors fabricated using AlGaN, GaN, AlN/diamond.

Practical implications

Since the majority of SAW sensors is designed with acoustically thin layers, the proposed model and calculation can be of interest for many practical material combinations. The presented model and calculation can be used in most cases of the optimal sensor design with respect to the sensor sensitivity or required area on the sensor chip.

Originality/value

The paper presents a new original model of multilayer structure SAW sensors and a new method of SAW velocity calculation. The method gives good results, with much simpler calculations than in the wave equation method, in cases where certain layers are acoustically thin.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 September 2019

Hamed Aminzadeh

Multistage amplifiers require a reliable frequency compensation solution to remain stable in a closed-loop configuration. A frequency compensation scheme creates an inner negative…

Abstract

Purpose

Multistage amplifiers require a reliable frequency compensation solution to remain stable in a closed-loop configuration. A frequency compensation scheme creates an inner negative feedback loop amongst different amplifying stages and shapes the frequency response such that an unconditionally stable single-pole amplifier results for closed-loop operation. The frequency compensation loop is thus responsible for the placement of the poles and zeros and the final stability of multistage amplifiers. An amplifier incorporating a sophisticated frequency compensation network cannot be, however, analyzed in the presence of a complex ac feedback loop. The purpose of this study is to provide a reliable model for the compensation loop of multistage amplifiers at the higher frequencies.

Design/methodology/approach

In this paper, the major part of the amplifier, including a two-port network comprising the compensation network, is characterized using a reliable feedback model.

Findings

The model integrates all the frequency-dependent components of the frequency compensation network, and it can evaluate the nondominant real or complex poles of an amplifier.

Originality/value

The reliability of the proposed model is verified through analysis of the frequency response of the amplifiers and by comparing the analytic results with the simulation results in standard CMOS process.

Details

Circuit World, vol. 45 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 December 2005

Dragan B. Kandić and Branimir D. Reljin

To investigate the general necessary condition for synthesis of square, real rational matrices of complex frequency as admittance matrices of active multiports with resistors…

Abstract

Purpose

To investigate the general necessary condition for synthesis of square, real rational matrices of complex frequency as admittance matrices of active multiports with resistors, inductors, capacitors and possibly multiport transformers and to prove that this condition is also sufficient for synthesis of stable, square, real rational matrices of complex frequency as admittance matrices of balanced active multiports having only resistors, capacitors and voltage‐amplifiers with sufficiently large amplifications. The main aim of the paper is to provide a new and general method for stable admittance matrices synthesis and to develop strict realization algorithm by active balanced transformerless multiport networks.

Design/methodology/approach

The objectives of the paper are achieved by using factorization of regular polynomial matrices in complex frequency with certain degree as products of other regular polynomial matrices with specified degrees. A set of sufficient conditions for such a factorization is presented and derived a pertinent algorithm as the starting point for investigation and solving network synthesis problem and generation of class of equivalent realizations.

Findings

Theorem 1 states that sufficient condition for factorization of Pth order, generally regular polynomial matrix P(s) in complex frequency s with degree L, whose determinant has K distinct zeros, in form P(s)=P1(sP2(s), where 1≤p2=P20L−1 is degree of polynomial matrix P2(s), reads: K>(P−1)·L+p2−1. The coefficient‐matrices of s, s2,… in P1(s) and P2(s) are real or complex depending on whether distinct zeros of det P(s) are real or complex, respectively. Theorem 2 states that: (a) for realization of Pth order matrix of real rational functions in complex frequency s (i.e. RRF matrix) as admittance matrix of active balanced RLC P‐port network with multiport transformers, or without them, P generalized controlled‐sources and P controlling‐ports are necessary, in general; and (b) P balanced voltage‐controlled voltage‐sources (VCVSs) with real and by module greater than unity controlling coefficients (“voltage amplifications”) are sufficient for realization of stable admittance RRF matrix by active, balanced, transformerless, RC P‐port network.

Originality/value

This is a research paper with the following two main contributions (original results). First, a theorem on sufficient conditions for factorization of regular polynomial matrices in complex frequency; and second, a theorem relating to sufficient conditions for synthesis of matrices of real rational functions in complex frequency by active, balanced, transformerless networks. The results may be interesting for network theorists and researchers in the field of electric circuits and systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 December 2023

Mukul Anand, Debashis Chatterjee and Swapan Kumar Goswami

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency…

Abstract

Purpose

The purpose of this study is to obtain the optimal frequency for low-frequency transmission lines while minimizing losses and maintaining the voltage stability of low-frequency systems. This study also emphasizes a reduction in calculations based on mathematical approaches.

Design/methodology/approach

Telegrapher’s method has been used to reduce large calculations in low-frequency high-voltage alternating current (LF-HVac) lines. The static compensator (STATCOM) has been used to maintain voltage stability. For optimal frequency selection, a modified Jaya algorithm (MJAYA) for optimal load flow analysis was implemented.

Findings

The MJAYA algorithm performed better than other conventional algorithms and determined the optimum frequency selection while minimizing losses. Voltage stability was also achieved with the proposed optimal load flow (OLF), and statistical analysis showed that the proposed OLF reduces the frequency deviation and standard error of the LF-HVac lines.

Originality/value

The optimal frequency for LF-HVac lines has been achieved, Telegrapher’s method has been used in OLF, and STATCOM has been used in LF-HVac transmission lines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Vladica Ðorđević, Zlatica Marinković, Vera Marković and Olivera Pronić-Rančić

– The purpose of this paper is the development of an efficient approach for extraction of the microwave FET noise wave temperatures.

Abstract

Purpose

The purpose of this paper is the development of an efficient approach for extraction of the microwave FET noise wave temperatures.

Design/methodology/approach

The proposed approach is based on an artificial neural network (ANN) trained to determine the noise wave temperatures from the given measured transistor noise parameters.

Findings

The presented approach enables not only efficient, but also an accurate direct extraction of the noise wave temperatures. This is confirmed by the validation of the proposed approach that is done by comparison of the transistor noise parameters obtained using the extracted noise wave temperatures with the measured noise parameters.

Originality/value

Application of ANN is a novel approach to extract the noise wave temperatures, which provides more efficient microwave FET noise wave modeling.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 April 2023

Metin Şengül

In the literature, while designing broadband matching networks, transducer power gain (TPG) is used to measure the transferred power. Generally, in TPG expressions, load and…

Abstract

Purpose

In the literature, while designing broadband matching networks, transducer power gain (TPG) is used to measure the transferred power. Generally, in TPG expressions, load and back-end impedances of the matching network are used. This study aims to derive a new quality factor-based TPG expression.

Design/methodology/approach

In deriving the new expression, narrowband L type-matching network design approach is used and the new expression in terms of back-end quality factor, load quality factor and output port quality factor is obtained. Then, a broadband-matching network design approach using the derived TPG expression is proposed.

Findings

Two broadband double-matching networks are designed by using the proposed design approach using the derived TPG expression. Performances of the designed-matching networks are compared with the performances of the matching networks designed by means of simplified real frequency technique which is a well-known technique in the literature, and it is shown that they are nearly the same.

Originality/value

In broadband-matching problems, generally an impedance-based TPG expression is used, and it must be satisfied by the designed broadband-matching networks. But, in the literature, there is no quality factor-based TPG expression that can be used in broadband-matching problems. So, this gap in the literature has been filled by this paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 August 2021

Hongyu Du, Rong Yang, Taochen Gu, Xiang Zhou, Samar Yazdani, Eric Sambatra, Fayu Wan, Sébastien Lallechere and Blaise Ravelo

The purpose of this paper is to introduce an innovative theoretical, numerical and experimental investigations on the HP NGD function. The identified HP NGD topology under study…

Abstract

Purpose

The purpose of this paper is to introduce an innovative theoretical, numerical and experimental investigations on the HP NGD function. The identified HP NGD topology under study is constituted by first order passive RC-network. The simulations and measurements confirm in very good agreement the HP NGD behaviors of the tested circuits. NGD responses with optimal values of about -1 ns and cut-off frequencies of about 20 MHz are obtained.

Design/methodology/approach

The identified HP NGD topology understudy is constituted by a first-order passive Resistor-capacitor RC network. An innovative approach to HP NGD analysis is developed. The analytical investigation from the voltage transfer function showing the meaning of HP properties is established.

Findings

This paper introduces innovative theoretical, numerical and experimental investigations on the HP NGD function.

Originality/value

The NGD characterization as a function of the resistance and capacitance parameters is investigated. The feasibility of the HP NGD function is verified with proofs of concept constituted of lumped surface mounted components on printed circuit boards. The simulations and measurements confirm in very good agreement the HP NGD behaviors of the tested circuits. NGD responses with optimal values of about −1 ns and cut-off frequencies of about 20 MHz are obtained.

Article
Publication date: 1 July 2014

Fengyuan Sun, Jean-Etienne Lorival, Francis Calmon and Christian Gontrand

The substrate coupling and loss in integrated circuits are analyzed. Then, the authors extract impedances between any numbers of embedded contacts. The paper aims to discuss these…

Abstract

Purpose

The substrate coupling and loss in integrated circuits are analyzed. Then, the authors extract impedances between any numbers of embedded contacts. The paper aims to discuss these issues.

Design/methodology/approach

The paper proposes a new substrate network 3D extraction technique, adapted from a transmission line method or Green kernels, but in the whole volume.

Findings

Extracting impedances between any numbers of embedded contacts with variable shapes or/and through silicon via. This 3D method is much faster comparing with FEM

Originality/value

Previous works consider TSVs alone, contacts onto the substrate. The authors do study entanglement between the substrate and the interconnections.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 221