Search results

1 – 10 of 31
Article
Publication date: 15 August 2019

Arivarasi A. and Anand Kumar

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic…

Abstract

Purpose

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic fabrication areas, which include printing devices and sensors in specified areas.

Design/methodology/approach

A systematic review of the literature focusing on existing challenges is carried out. Focused toward sensors and devices in electrochemical and microfluidic areas, the challenges are oriented for a discussion exploring the suitability of printing varied geometries in an accurate manner. Classifications on challenges are based on four key categories such as process, material, size and application as the printer designs are mostly based on these parameters.

Findings

A key three-dimensional printing process methodologies have their unique advantages compared to conventional printing methods, still having the challenges to be addressed, in terms of parameters such as cost, performance, speed, quality, accuracy and resolution. Three-dimensional printing is yet to be applied for consumer usable products, which will boost the manufacturing sector. To be specific, the resolution of printing in desktop printers needs improvement. Printing scientific products are halted with prototyping stages. Challenges in three-dimensional printing sensors and devices have to be addressed by forming integrated processes.

Research limitations/implications

The research is underway to define an integrated process-based on three-dimensional Printing. The detailed technical details are not shared for scientific output. The literature is focused to define the challenges.

Practical implications

The research can provide ideas to business on innovative designs. Research studies have scope for improvement ideas.

Social implications

Review is focused on to have an integrated three-dimensional printer combining processes. This is a cost-oriented approach saving much of space reducing complexity.

Originality/value

To date, no other publication reviews the varied three-dimensional printing challenges by classifying according to process, material, size and application aspects. Study on resolution based data is performed and analyzed for improvements. Addressing the challenges will be the solution to identify an integrated process methodology with a cost-effective approach for printing macro/micro/nano objects and devices.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 October 2018

Jose David Fernandez and Joel de Coninck

Two-photon polymerization (TPP) has become one of the most popular techniques for stereolithography at very high resolutions. When printing relatively large structures at high…

Abstract

Purpose

Two-photon polymerization (TPP) has become one of the most popular techniques for stereolithography at very high resolutions. When printing relatively large structures at high resolutions, one of the main limiting factors is the printing time. The purpose of this paper is to present a new slicing algorithm to minimize printing times.

Design/methodology/approach

Typically, slicing algorithms used for TPP do not take into account the fact that TPP can print at a range of resolutions (i.e. with different heights and diameters) by varying parameters such as exposure time, laser power, photoresist properties and optical arrangements. This work presents multiresolution layered manufacturing (MLM), a novel slicing algorithm that processes 3D structures to separate parts manufacturable at low resolution from those that require a higher resolution.

Findings

MLM can significantly reduce the printing time of 3D structures at high resolutions. The maximum theoretical speed-up depends on the range of printing resolutions, but the effective speed-up also depends on the geometry of each 3D structure.

Research limitations/implications

MLM opens the possibility to significantly decrease printing times, potentially opening the use of TPP to new applications in many disciplines such as microfluidics, metamaterial research or wettability.

Originality/value

There are many instances of previous research on printing at several resolutions. However, in most cases, the toolpaths have to be manually arranged. In some cases, previous research also automates the generation of toolpaths, but they are limited in various ways. MLM is the first algorithm to comprehensively solve this problem for a wide range of true 3D structures.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 March 2008

Dimitrios Karalekas

The objective of this study is to investigate the use of a fibre Bragg grating (FBG) sensor for measuring of curing strains that develop during the solidification of a…

Abstract

Purpose

The objective of this study is to investigate the use of a fibre Bragg grating (FBG) sensor for measuring of curing strains that develop during the solidification of a photocurable resin used in 3D microfabrication.

Design/methodology/approach

The followed approach consists of embedding a 1,300 nm FBG into a cylindrical specimen, fabricated into a transparent mould, being exposed to ultraviolet laser light. The further development of the cure induced strains under thermal treatment was also studied by post‐conditioning the cylindrical specimen in an oven at 70°C.

Findings

The experimental results demonstrate the capability of the FBG sensor to provide useful information on the strain build‐up during laser solidification and their post‐cure evolution under the presence of a thermal environment.

Research limitations/implications

Future work should involve the use of smaller diameter FBG sensors in microstereolithography built parts.

Practical implications

It is shown that considerable cure strains are developed at the end of the photo‐polymerisation process that eventually can affect the structural resolution of final parts fabricated by microstereolithography.

Originality/value

The presented method can be used to investigate other photopolymers used in micro‐stereolithography.

Details

Rapid Prototyping Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Anand M.B. and Vinodh S.

The purpose of this study is to rank additive manufacturing (AM) processes for microfabrication using integrated fuzzy analytic hierarchy process (AHP)-technique for order of…

Abstract

Purpose

The purpose of this study is to rank additive manufacturing (AM) processes for microfabrication using integrated fuzzy analytic hierarchy process (AHP)-technique for order of preference by similarity to ideal solution (TOPSIS).

Design/methodology/approach

AM technology selection is formulated as multi-criteria decision-making (MCDM) problem and ranking is obtained using fuzzy AHP-TOPSIS. Five candidate processes considered are laser-induced forward transfer (LIFT), microstereolithography, micro-selective laser sintering (micro-SLS), inkjet, micro 3D printing.

Findings

Criteria weights are obtained using fuzzy AHP, and ranking is obtained using fuzzy TOPSIS. The top ranked criteria include material compatibility, geometrical complexity and minimum feature size. The ranking sequence is LIFT > microstereolithography > micro-SLS > inkjet > micro-3D printing.

Research limitations/implications

In the present study, ten criteria and five alternatives are used. In future, additional criteria and alternatives could be considered in line with technological advancements.

Practical implications

The generated ranking enabled the selection of appropriate AM process for microfabrication.

Originality/value

The application of hybrid MCDM approach for ranking AM processes for microfabrication is the contribution of the study.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2021

Yanen Wang, Ray Tahir Mushtaq, Ammar Ahmed, Ammar Ahmed, Mudassar Rehman, Mudassar Rehman, Aqib Mashood Khan, Shubham Sharma, Dr Kashif Ishfaq, Haider Ali and Thierno Gueye

Additive manufacturing (AM) technology has a huge influence on the real world because of its ability to manufacture massively complicated geometrics. The purpose of this study is…

Abstract

Purpose

Additive manufacturing (AM) technology has a huge influence on the real world because of its ability to manufacture massively complicated geometrics. The purpose of this study is to use CiteSpace (CS) visual analysis to identify fused deposition modeling (FDM) research and development patterns to guide researchers to decide future research and provide a framework for corporations and organizations to prepare for the development in the rapid prototyping industry. Three-dimensional printing (3DP) is defined to budget minimize manufactured input and output for aviation and the medical product industrial sectors. 3DP has implemented its potential in the Coronavirus Disease of 2019 (COVID-19) reaction.

Design/methodology/approach

First, 396 original publications were extracted from the web of science (WOS) with the comprehensive list and did scientometrics analysis in CS software. The parameters are specified in CS including the span (from 2011 to 2019, one year slice for the co-authorship and the co-accordance analysis), visualization (show the merged networks), specific criteria for selection (top 20%), node form (author, organization, region, reference cited; cited author, journal and keywords) and pruning (pathfinder and slicing network). Finally, correlating data was studied and showed the results of the visualization study of FDM research were shown.

Findings

The framework of FDM information is beginning to take shape. About hot research topics, there are “Morphology,” “Tensile Property by making Blends,” “Use of Carbon nanotube in 3DP” and “Topology optimization.” Regarding the latest research frontiers of FDM printing, there are “Fused Filament Fabrication,” “AM,” in FDM printing. Where “Post-processing” and “environmental impact” are the research hotspots in FDM printing. These research results can provide insight into FDM printing and useful information to consider the existing studies and developments in FDM researchers’ analysis.

Research limitations/implications

Despite some important obtained results through FDM-related publications’ visualization, some deficiencies remain in this research. With >99% of articles written in English, the input data for CS was all downloaded from WOS databases, resulting in a language bias of papers in other languages and neglecting other data sources. Although, there are several challenges being faced by the FDM that limit its wide variety of applications. However, the significance of the current work concerning the technical and engineering prospects is discussed herein.

Originality/value

First, the novelty of this work lies in describing the FDM approach in a Scientometric way. In Scientometric investigation, leading writers, organizations, keywords, hot research and emerging knowledge points were explained. Second, this research has thoroughly and comprehensively examined the useful sustainability effects, i.e. economic sustainability, energy-based sustainability, environmental sustainability, of 3DP in industrial development in qualitative and quantitative aspects by 2025 from a global viewpoint. Third, this work also described the practical significance of FDM based on 3DP since COVID-19. 3DP has stepped up as a vital technology to support improved healthcare and other general response to emergency situations.

Article
Publication date: 18 April 2016

Jian Zhou, Qiuyu Zhang, Hepeng Zhang, Jiaojun Tan, Shaojie Chen, Qing Liu, Mingliang Ma and Tiejun Xin

The purpose of this paper is to evaluate the properties of several thiol-acrylate photosensitive systems and compare with corresponding acrylate free-radical systems. The…

Abstract

Purpose

The purpose of this paper is to evaluate the properties of several thiol-acrylate photosensitive systems and compare with corresponding acrylate free-radical systems. The potential stereolithography applications of thiol–ene photosensitive systems are also discussed.

Design/methodology/approach

In the both thiol–ene and acrylate free-radical photosensitive systems, various key performances were characterized. The function group conversions were characterized by real-time Fourier transform infrared spectroscopy. The tension strength was determined according to the standard ASTM D638-2003, the flexible strength was determined according to ASTM D790-07 and the hardness was measured according to ASTM D2240-05. The volume shrinkage was measured by dilatometer method. The glass transition temperature was analyzed by differential scanning calorimeter.

Findings

As adding mercapto propionates into acrylate system, the inhibition of polymerization by oxygen was controlled and the flexible performance was improved. In addition, the photosensitive resin showed better tension strength, higher elongation at break and lower volume shrinkage. Among the four mercapto propionates, rigid TEMPIC showed most obvious affect, followed hexa-functional DPMP, tetra-functional PETMP and tri-functional TMMP.

Originality/value

Although the thiol–ene photosensitive resin has unmatched advantages in performance, there are no reports on the thiol–ene photosensitive resin in the stereolithography application. In this study, thiol–ene photopolymerization material was first tentatively implemented in stereolithography area. Several critical performance parameters were compared between thiol–ene and acrylate free-radical photosensitive systems.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 October 2014

Xiang Ren, Qingwei Zhang, Kewei Liu, Ho-lung Li and Jack G. Zhou

The purpose of this paper is establishing a general mathematical model and theoretical design rules for 3D printing of biomaterials. Additive manufacturing of biomaterials…

1014

Abstract

Purpose

The purpose of this paper is establishing a general mathematical model and theoretical design rules for 3D printing of biomaterials. Additive manufacturing of biomaterials provides many opportunities for fabrication of complex tissue structures, which are difficult to fabricate by traditional manufacturing methods. Related problems and research tasks are raised by the study on biomaterials’ 3D printing. Most researchers are interested in the materials studies; however, the corresponded additive manufacturing machine is facing some technical problems in printing user-prepared biomaterials. New biomaterials have uncertainty in physical properties, such as viscosity and surface tension coefficient. Therefore, the 3D printing process requires lots of trials to achieve proper printing parameters, such as printing layer thickness, maximum printing line distance and printing nozzle’s feeding speed; otherwise, the desired computer-aided design (CAD) file will not be printed successfully in 3D printing.

Design/methodology/approach

Most additive manufacturing machine for user-prepared bio-material use pneumatic valve dispensers or extruder as printing nozzle, because the air pressure activated valve can print many different materials, which have a wide range of viscosity. We studied the structure inside the pneumatic valve dispenser in our 3D heterogeneous printing machine, and established mathematical models for 3D printing CAD structure and fluid behaviors inside the dispenser during printing process.

Findings

Based on theoretical modeling, we found that the bio-material’s viscosity, surface tension coefficient and pneumatic valve dispenser’s dispensing step time will affect the final structure directly. We verified our mathematical model by printing of two kinds of self-prepared biomaterials, and the results supported our modeling and theoretical calculation.

Research limitations/implications

For a certain kinds of biomaterials, the mathematical model and design rules will have unique solutions to the functions and equations. Therefore, each biomaterial’s physical data should be collected and input to the model for specified solutions. However, for each user-made 3D printing machine, the core programming code can be modified to adjust the parameters, which follows our mathematical model and the related CAD design rules.

Originality

This study will provide a universal mathematical method to set up design rules for new user-prepared biomaterials in 3D printing of a CAD structure.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3803

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 November 2021

Qianyong Chen, Jinghua Xu and Shuyou Zhang

Compared with cusp height and area deviation ratio, volume error (VE) caused by the layer height could represent the stair-case effect more comprehensively. The proposed relative…

Abstract

Purpose

Compared with cusp height and area deviation ratio, volume error (VE) caused by the layer height could represent the stair-case effect more comprehensively. The proposed relative volume error (RVE)-based adaptive slicing method takes VE rather than cusp height as slicing criteria, which can improve part surface quality for functionalized additive manufacturing.

Design/methodology/approach

This paper proposes a volumetric adaptive slicing method of manifold mesh for rapid prototyping based on RVE. The pre-height sequences of manifold mesh are first preset to reduce the SE by dividing the whole layer sequence into several parts. A breadth-first search-based algorithm has been developed to generate a solid voxelization to get VE. A new parameter RVE is proposed to evaluate the VE caused by the sequence of the layer positions. The RVE slicing is conducted by iteratively adjusting the layer height sequences under different constraint conditions.

Findings

Three manifold models are used to verify the proposed method. Compared with uniform slicing with 0.2 mm layer height, cusp height-based method and area deviation-based method, the standard deviations of RVE of all three models are improved under the proposed method. The surface roughness measured by the confocal laser scanning microscope proves that the proposed RVE method can greatly improve part surface quality by minimizing RVE.

Originality/value

This paper proposes an RVE-based method to balance the surface quality and print time. RVE could be calculated by voxelized parts with required accuracy at a very fast speed by parallel.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 31