Search results

1 – 10 of over 41000
Article
Publication date: 8 August 2016

Samia M Said

The dual-phase-lag (DPL) model and Lord-Shulman theory with one relaxation time are applied to study the effect of the gravity field, the magnetic field, and the hydrostatic…

Abstract

Purpose

The dual-phase-lag (DPL) model and Lord-Shulman theory with one relaxation time are applied to study the effect of the gravity field, the magnetic field, and the hydrostatic initial stress on the wave propagation in a two-temperature generalized thermoelastic problem for a medium with an internal heat source that is moving with a constant speed. The paper aims to discuss this issue.

Design/methodology/approach

The exact expressions of the considered variables are obtained by using normal mode analysis.

Findings

Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of the gravity field as well as the magnetic field. Comparisons are made between the results of the two different models with and without temperature dependent properties and for two different values of the hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time.

Originality/value

In the present work, the author shall formulate a two-temperature generalized magneto-thermoelastic problem for a medium with temperature dependent properties and with an internal heat source that is moving with a constant speed under the influence of a gravity field and a hydrostatic initial stress. Normal mode analysis is used to obtain the exact expressions for the displacement components, thermodynamic temperature, conductive temperature, and stress components. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the L-S theory in the absence and presence of a magnetic field as well as a gravity field. Comparisons are also made between the results of the two theories with and without temperature dependent properties and for two different values of hydrostatic initial stress. A comparison is also made between the results of the two different models for two different values of the time.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 June 2017

Mohamed I.A. Othman, Yassmin D. Elmaklizi and Nehal T. Mansoure

The purpose of this paper is to investigate the propagation of plane waves in an isotropic elastic medium under the effect of rotation, magnetic field and temperature-dependent…

Abstract

Purpose

The purpose of this paper is to investigate the propagation of plane waves in an isotropic elastic medium under the effect of rotation, magnetic field and temperature-dependent properties with twotemperatures.

Design/methodology/approach

The problem has been solved analytically by using the normal mode analysis.

Findings

The numerical results are given and presented graphically when mechanical and thermal force are applied. Comparisons are made with the results predicted by the three-phase-lag (3PHL) model and dual-phase-lag model in the presence and absence of cases where the modulus of elasticity is independent of temperature.

Originality/value

In this work, the authors study the influence of rotation and magnetic field with twotemperature on thermoelastic isotropic medium when the modulus of elasticity is taken as a linear function of reference temperature in the context of the 3PHL model. The numerical results for the field quantities are obtained and represented graphically.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 February 2021

Yongxing Guo, Min Chen, Li Xiong, Xinglin Zhou and Cong Li

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement…

Abstract

Purpose

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement dimension and the principle of the sensing configuration. Some commercial sensors have also been introduced and future work in this field has also been discussed. This paper could provide an important reference for the research community.

Design/methodology/approach

This review is to present the state of the art for FBG acceleration sensing technologies from two aspects: the principle of the measurement dimension (one-dimension and multi-dimension) and the principle of the sensing configuration (beam type, radial vibration type, axial vibration type and other composite structures).

Findings

The current research on developing FBG acceleration sensors is mainly focused on the sensing method, the construction and design of the elastic structure and the design of a new information detection method. This paper hypothesizes that in the future, the following research trends will be strengthened: common single-mode fiber grating of the low cost and high utilization rate; high sensitivity and strength special fiber grating; multi-core fiber grating for measuring single-parameter multi-dimensional information or multi-parameter information; demodulating equipment of low cost, small volume and high sampling frequency.

Originality/value

The principle of the measurement dimension and principle of the sensing configuration for FBG acceleration sensors have been introduced, which could provide an important reference for the research community.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2003

A. Kassab, E. Divo, J. Heidmann, E. Steinthorsson and F. Rodriguez

We report on the progress in the development and application of a coupled boundary element/finite volume method temperature‐forward/flux‐back algorithm developed to solve…

2124

Abstract

We report on the progress in the development and application of a coupled boundary element/finite volume method temperature‐forward/flux‐back algorithm developed to solve conjugate heat transfer arising in 3D film‐cooled turbine blades. We adopt a loosely coupled strategy where each set of field equations is solved to provide boundary conditions for the other. Iteration is carried out until interfacial continuity of temperature and heat flux is enforced. The NASA‐Glenn explicit finite volume Navier‐Stokes code Glenn‐HT is coupled to a 3D BEM steady‐state heat conduction solver. Results from a CHT simulation of a 3D film‐cooled blade section are compared with those obtained from the standard two temperature model, revealing that a significant difference in the level and distribution of metal temperatures is found between the two. Finally, current developments of an iterative strategy accommodating large numbers of unknowns by a domain decomposition approach is presented. An iterative scheme is developed along with a physically‐based initial guess and a coarse grid solution to provide a good starting point for the iteration. Results from a 3D simulation show the process that converges efficiently and offers substantial computational and storage savings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1957

J. Taylor

AS an aircraft flies through the atmosphere it is heated kinetically owing to its forward velocity. For subsonic speeds the effect is hardly measurable, at M= 1 ·5 it is…

Abstract

AS an aircraft flies through the atmosphere it is heated kinetically owing to its forward velocity. For subsonic speeds the effect is hardly measurable, at M= 1 ·5 it is definitely measurable and as there is a rapid change with speed it soon becomes necessary to include kinetic heating in the design conditions for an aircraft structure. All other conditions that are present at lower speeds have still to be retained and it becomes a matter of adding heating conditions to an already large number of conditions. The same approach must be used of preparing a design envelope on which appropriate factors have to be applied. In doing this it should be appreciated that there are two distinct effects of heating, one is the steady temperature condition associated with sustained steady flight conditions, the other is the rapid change in temperature and associated structural stresses and distortions when the aircraft changes speed or height. Considering first the steady temperature condition, it is evident that this can only arise in practice after a fairly long time at the particular flight condition to which it applies and that intermittent departures from it will not have a significant effect. The aircraft speed that has to be selected must of course be one that might reasonably be expected to be sustained occasionally for moderate periods, although perhaps not quite long enough to reach equilibrium. There is a comparable case in the normal strength requirements for gusts. The design gust has to be associated with an appropriate aircraft forward speed namely ‘Design Cruising Speed’. It is suggested that exactly the same speed be used to determine the steady temperature conditions with no further safety factor, and that all static and fatigue strength conditions be satisfied with full safety factors at this temperature condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 27 August 2020

Devender Sheoran, Ramesh Kumar, Sunil Kumar and Kapil Kumar Kalkal

The purpose of this paper is to study the reflection of plane waves in an initially stressed rotating thermoelastic diffusive medium with micro-concentrations and two-temperature.

Abstract

Purpose

The purpose of this paper is to study the reflection of plane waves in an initially stressed rotating thermoelastic diffusive medium with micro-concentrations and two-temperature.

Design/methodology/approach

A two-dimensional model of generalized thermoelasticity is considered. The governing equations are transformed into the non-dimensional forms using the dimensionless variables. Then, potential functions are introduced for the decoupling of the waves. Further, appropriate boundary conditions are assumed to completely solve the problem. Finally, numerical computations are performed using MATLAB.

Findings

The problem is solved analytically and it is found that there exist five coupled waves in addition to an independent micro-concentration wave in the considered medium. The amplitude ratios and energy ratios of these reflected waves have also been computed numerically for a specific material.

Originality/value

The modulus values of amplitude ratios are presented graphically to exhibit the effects of angular velocity, initial stress, two-temperature, diffusion and micro-concentration parameters. The expressions of energy ratios obtained in explicit form are also depicted graphically as functions of angle of incidence. The law of conservation of energy at the free surface during reflection phenomenon is also verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2022

Vipin Gupta, Rajesh Kumar, Manjeet Kumar, Vijayata Pathania and M.S. Barak

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Abstract

Purpose

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Design/methodology/approach

This investigation studied the reflection and transmission of plane waves on an interface of nonlocal orthotropic piezothermoelastic space (NOPHS) and fluid half-space (FHS) in reference to dual-phase-lag theory under three different temperature models, namely, without-two-temperature, classical-two-temperature, and hyperbolic-two-temperature with memory-dependent derivatives (MDDs).

Findings

The primary (P) plane waves propagate through FHS and strike at the interface x3 = 0. The results are one wave reflected in FHS and four waves transmitted in NOPHS. It is noticed that these ratios are observed under the impact of nonlocal, dual-phase-lag (DPL), two-temperature and memory-dependent parameters and are displayed graphically. Some particular cases are also deduced, and the law of conservation of energy across the interface is justified.

Research limitations/implications

According to the available literature, there is no substantial research on the considered model incorporating NOPHS and FHS with hyperbolic two-temperature, DPL and memory.

Practical implications

The current model may be used in various fields, including earthquake engineering, nuclear reactors, high particle accelerators, aeronautics, soil dynamics and so on, where MDDs and conductive temperature play a significant role. Wave propagation in a fluid-piezothermoelastic media with different characteristics such as initial stress, magnetic field, porosity, temperature, etc., provides crucial information about the presence of new and modified waves, which is helpful in a variety of technical and geophysical situations. Experimental seismologists, new material designers and researchers may find this model valuable in revising earthquake estimates.

Social implications

The researchers may classify the material using the two-temperature parameter and the time-delay operator, where the parameter is a new indication of its capacity to transmit heat in interaction with various materials.

Originality/value

The submitted manuscript is original work done by the team of said authors and each author contributed equally to preparing this manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2010

Esmail M.A. Mokheimer

The aim of this article is to present the results of a parametric analysis of the entropy generation due to mixed convection in the entry‐developing region between two

Abstract

Purpose

The aim of this article is to present the results of a parametric analysis of the entropy generation due to mixed convection in the entry‐developing region between two differentially heated isothermal vertical plates.

Design/methodology/approach

The entropy generation was estimated via a numerical solution of the mass, momentum and energy conservation equations governing the flow and heat transfer in the vertical channel between the two parallel plates. The resultant temperature and velocity profiles were used to estimate the entropy generation and other heat transfer parameters over a wide range of the operating parameters. The investigated parameters include the buoyancy parameter (Gr/Re), Eckert number (Ec), Reynolds number (Re), Prandtl number (Pr) and the ratio of the dimensionless temperature of the two plates (θT).

Findings

The optimum values of the buoyancy parameter (Gr/Re) optimum at which the entropy generation assumes its minimum for the problem under consideration have been obtained numerically and presented over a wide range of the other operating parameters. The effect of the other operating parameters on the entropy generation is presented and discussed as well.

Research limitations/implications

The results of this investigation are limited to the geometry of vertical channel parallel plates under isothermal boundary conditions. However, the concept of minimization of entropy generation via controlling the buoyancy parameter is applicable for any other geometry under any other thermal boundary conditions.

Practical implications

The results presented in this paper can be used for optimum designs of heat transfer equipment based on the principle of entropy generation minimization with particular focus on the optimum design of plate and frame heat exchanger and the optimization of electronic packages and stacked packaging of laminar‐convection‐cooled printed circuits.

Originality/value

This paper introduces the entropy generation minimization via controlling the operating parameters and clearly identifies the optimum buoyancy parameter (Gr/Re) at which entropy generation assumes its minimum under different operating conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 March 2010

Fahad G. Al‐Amri and Maged A.I. El‐Shaarawi

This paper's aim is to investigate the effect of surface radiation on the developing laminar forced convection flow of a transparent gas between two vertical parallel plates. The…

Abstract

Purpose

This paper's aim is to investigate the effect of surface radiation on the developing laminar forced convection flow of a transparent gas between two vertical parallel plates. The walls are heated asymmetrically, this enhances the effect of radiation even with the two walls having low values of emissivity.

Design/methodology/approach

Numerical techniques were used to study the effect of the controlling parameters on wall temperatures, fluid temperature profiles, and Nusslet number.

Findings

The values of the radiation number at which surface radiation can engender symmetric heating (and hence maximum average Nusslet number on the heated wall and maximum reduction in the maximum heated wall temperature are achieved) are obtained. Threshold values of the radiation number at which radiation effects can be neglected are obtained.

Research limitations/implications

Boundary‐layer flow model is used.

Practical implications

The implications include design of high‐temperature gas‐cooled heat exchangers, advanced energy conversion devices, advanced types of power plants, and many others.

Originality/value

Though a number of analyses of internal flows including radiation effect have been made, most have been directed at the simplest case of the prescribed uniform (isothermal) temperature boundary condition. The available literature that deals with the problem with prescribed heat flux at the walls is limited to fully developed flow or specifying the convection coefficient a priori. The lack of both theoretical and experimental data concerning combined forced convection and surface radiation developing flows between two parallel and its practical importance motivated the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1987

Zbigniew Mańko

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature

Abstract

While calculating internal forces of a structure resulting from temperature it is necessary to know thermal conduction and what goes hand in hand to determine temperature distribution at various points of the analysed structures. Finite strip method (FSM) is very suitable for the analysis of thermal conduction, heating, heat and temperature distribution in engineering structures, especially rectangular of identical edge conditions. The paper presents several examples of FSM application for the analysis of conduction and heat and temperature distribution for various types of engineering structures which can appear, among others, while welding several joined elements with welds made at specified speed as linear and point welds. Bars, shields, square and rectangular plates, steel orthotropic plates, steel and combined girders (steel‐concrete), box girders subject to various loads connected with heat and temperature (loaded with temperature, non‐uniformly heated surface). The obtained results may be useful in engineering practice for determining actual temperature and load capacity in individual elements of the construction.

Details

Engineering Computations, vol. 4 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 41000