Search results

1 – 10 of 49
Article
Publication date: 3 January 2017

Farid Shahmiri

The aim of this paper was to experimentally examine twin-rotor hover performance for different rotor overlap ratios at practical rotor loading.

Abstract

Purpose

The aim of this paper was to experimentally examine twin-rotor hover performance for different rotor overlap ratios at practical rotor loading.

Design/methodology/approach

The methodology was formed based on data measurements for a designed twin-rotor test model and development of hover performance mathematical models. Thus, measurements were made using a central composite test plan, and then mathematical models for thrust power required power loading (PL) and figure of merit (FM) as functions of collective pitch tip speed; rotor overlap ratio was obtained. In the present paper, the test model consisted of two three-bladed rotors with a diameter of 220 mm and a blade aspect ratio of 16.05. The blades were of a rectangular planform with NACA 0012 cross sections and had no twist or taper. The model was built such that the rear rotor was fixed on the fuselage, and the front rotor could move longitudinally for tests up to about 40 per cent overlap ratio in hover.

Findings

The best hover aerodynamic efficiency (maximum PL of 14.6 kg/kW) was achieved for non-overlapped rotors at a low value of disc loading (DL) and also at FM of 0.6 at that DL. This result was in agreement with blade element momentum theory predictions.

Practical implications

Results for the twin-rotor test model can be generalized for actual tandem helicopters through the Reynolds number transformation technique and also some modifications.

Originality/value

Design and construction of the twin-rotor test model and experimental measurements of hover performance based on an optimal test plan were performed for the first time.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 October 2016

Santosh Kumar Choudhary

The purpose of this paper is to investigate an optimal control solution with prescribed degree of stability for the position and tracking control problem of the twin rotor

Abstract

Purpose

The purpose of this paper is to investigate an optimal control solution with prescribed degree of stability for the position and tracking control problem of the twin rotor multiple input-multiple output (MIMO) system (TRMS). The twin rotor MIMO system is a benchmark aerodynamical laboratory model having strongly non-linear characteristics and unstable coupling dynamics which make the control of such system for either posture stabilization or trajectory tracking a challenging task.

Design/methodology/approach

This paper first describes the dynamical model of twin rotor MIMO system (TRMS) and then it adopts linear-quadratic regulator (LQR)-based optimal control technique with prescribed degree of stability to achieve the desired trajectory or posture stabilization of TRMS.

Findings

The simulation results show that the investigated controller has both static and dynamic performance; therefore, the stability and the quick control effect can be obtained simultaneously for the twin rotor MIMO system.

Originality/value

The articles on LQR optimal controllers for TRMS can also be found in many literatures, but the prescribed degree of stability concept was not discussed in any of the paper. In this work, new LQR with the prescribed degree of stability concept is applied to provide an optimal control solution for the position and tracking control problem of TRMS.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 11 December 2020

Khawaja Shafiq Haider, Aamina Bintul Huda, Akhtar Rasool and Syed Hashim Raza Bukhari

The purpose of this paper is to identify the fault modes of a nonlinear twin-rotor system (TRS) using the subspace technique to facilitate fault identification, diagnosis and…

Abstract

Purpose

The purpose of this paper is to identify the fault modes of a nonlinear twin-rotor system (TRS) using the subspace technique to facilitate fault identification, diagnosis and control applications.

Design/methodology/approach

For identification of fault modes, three types of system malfunctions are introduced. First malfunction resembles actuator, second internal system dynamics and third represents sensor malfunction or offset. For each fault scenario, the resulting TRS model is applied with persistently exciting inputs and corresponding outputs are recorded. The collected input–output data are invoked in NS4SID subspace system identification algorithm to obtain the unknown fault model. The identified actuator fault modes of the TRS can be used for fault diagnostics, fault isolation or fault correction applications.

Findings

The identified models obtained through system identification are validated for correctness by comparing the response of the actual model under the fault condition and identified model. The results certify that the identified fault modes correctly resemble the respective fault conditions in the actual system.

Originality/value

The utilization of proposed work for current research emphasized the area of fault detection, diagnosis and correction applications that makes its value significantly. These modes when used for diagnosis purposes allow users to timely get intimated and rectify the performance degradation of the plant before it gets totally malfunctioned. Moreover, the slight performance degradation is also indicated when fault diagnosis is performed.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 9 April 2018

Arpit Jain, Satya Sheel and Piyush Kuchhal

The purpose of this paper is to study the application of entropy based optimized fuzzy logic control for a real-time non-linear system. Optimization of the fuzzy membership…

Abstract

Purpose

The purpose of this paper is to study the application of entropy based optimized fuzzy logic control for a real-time non-linear system. Optimization of the fuzzy membership function (MF) is one of the most explored areas for performance improvement of the fuzzy logic controllers (FLC). Conversely, majority of previous works are motivated on choosing an optimized shape for the MF, while on the other hand the support of fuzzy set is not accounted.

Design/methodology/approach

The proposed investigation provides the optimal support for predefined MFs by using genetic algorithms-based optimization of fuzzy entropy-based objective function.

Findings

The experimental results obtained indicate an improvement in the performance of the controller which includes improvement in error indices, transient and steady-state parameters. The applicability of proposed algorithm has been verified through real-time control of the twin rotor multiple-input, multiple-output system (TRMS).

Research limitations/implications

The proposed algorithm has been used for the optimization of triangular sets, and can also be used for the optimization of other fussy sets, such as Gaussian, s-function, etc.

Practical implications

The proposed optimization can be combined with other algorithms which optimize the mathematical function (shape), and a potent optimization tool for designing of the FLC can be formulated.

Originality/value

This paper presents the application of a new optimized FLC which is tested for control of pitch and yaw angles in a TRMS. The performance of the proposed optimized FLC shows significant improvement when compared with standard references.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 May 2023

Marek Hreczka, Roman Kolano, Aleksandra Kolano-Burian, Wojciech Burlikowski and Janusz Hetmańczyk

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on…

Abstract

Purpose

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on manufactured machines. The paper focuses on the comparison of losses in the core of a machine with a classical stator core made of an iron–silicon material (Fe–Si) and a new one made of a modern METGLAS material.

Design/methodology/approach

Computer models of the prototype motors were created using FEM. The designed machines were manufactured, and experimental tests were performed. To achieve high frequencies in rotating magnetic fields, motors with a stator to rotor pole ratio of 9/12 were built. Twin rotor approach was applied, as two identical rotors were built along the two geometrically identical stators made of different core materials.

Findings

Experimental studies have shown the superiority of the METGLAS material over the classical Fe–Si material. Material parameters were measured directly on the prepared cores as library data used in the simulation may be incorrect due to technological processes during core production, which was also verified. Problems related to twin rotor approach have been identified. Solution to the problem has been suggested. Necessity of 3D FEM modelling was identified.

Originality/value

The main source of originality is that METGLAS material used in the prototype machines was developed and manufactured by the authors themselves. Original approach to core parameter evaluation based on simplified methodology has been suggested. Another original part is a simplified methodology applied to loss measurement during no-load test.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 September 2022

Zeyang Zhou and Jun Huang

The purpose of his paper is to study the radar stealth performance of a Y-type quadrotor with coaxial rotors and parallel rotors.

Abstract

Purpose

The purpose of his paper is to study the radar stealth performance of a Y-type quadrotor with coaxial rotors and parallel rotors.

Design/methodology/approach

This Y-type quadrotor is designed as an aerodynamic layout with parallel twin rotors at the front and coaxial twin rotors at the rear. The multi-rotor scattering (MRS) method based on multi-rotor dynamic simulation (MRDS) and electromagnetic scattering module (ESM) is presented. MRDS is used to simulate the complex rotation of parallel rotors and coaxial rotors. ESM is used to calculate the instantaneous radar cross-section (RCS) of the quadrotor.

Findings

For a single rotor, the minimum period of the RCS curve at a given azimuth is equal to the basic passage time of the blade, where increasing the speed can shorten this minimum period. When the elevation angle increases, the forward RCS fluctuation of the quadrotor increases, while the average RCS decreases. The change of the roll angle will affect both the mean and the maximum difference of the RCS–time curve at the given lateral azimuth. The increase of the pitch angle will enhance the dynamic amplitude of the RCS–time curve under the forward azimuth.

Practical implications

The research in this article can provide reference for the stealth design of the Y-type quadcopter in the future.

Originality/value

The originality is the establishment of the MRS method. This method could provide value for dealing with the electromagnetic scattering problem of coaxial rotors and parallel rotors.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1942

J. Lockwood Taylor

REPORTS from America speak of flight tests of two types of screw‐lift aircraft, the Sikorsky multi‐rotor machine, and a twin‐rotor type. From this it would seem that the day of…

Abstract

REPORTS from America speak of flight tests of two types of screw‐lift aircraft, the Sikorsky multi‐rotor machine, and a twin‐rotor type. From this it would seem that the day of the practical helicopter, so Ions foreshadowed, is not far distant. The following general notes on design considerations may therefore be sufficiently topical to be of interest.

Details

Aircraft Engineering and Aerospace Technology, vol. 14 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 April 1956

P.R. Payne

HELICOPTER performance methods currently in use fall into two main groups. The smallest is typified by Refs. and, and evaluates performance by considering the forces acting on…

Abstract

HELICOPTER performance methods currently in use fall into two main groups. The smallest is typified by Refs. and, and evaluates performance by considering the forces acting on each element of the blade. To do this it is first necessary to determine the flapping and pitch angles of the rotor, and then to integrate the elemental forces. The equations thus developed are much too complicated for design office use, and simplifications such as Ref. are achieved only at the expense of limiting the work to untwisted and untapered blades. Moreover the basic theory so far published is incomplete since it is tacitly assumed that the rotor thrust is normal to the no‐feathering axis or the tip path plane.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 2005

M. Hasan Shaheed

To develop a non‐linear modelling technique for modern air vehicles with an application to a twin rotor multi‐input‐multi‐output system (TRMS) which resembles the dynamics of a…

1420

Abstract

Purpose

To develop a non‐linear modelling technique for modern air vehicles with an application to a twin rotor multi‐input‐multi‐output system (TRMS) which resembles the dynamics of a helicopter to a certain extent and presents formidable control challenges.Design/methodology/approach – A Non‐linear AutoRegressive process with eXternal input (NARX) approach with a feedforward neural work and a resilient propagation (RPROP) algorithm is used to model the system. The RPROP algorithm possesses direct weight update capability without considering the size of the partial derivative. The obtained model is shown to be adequate by carrying out convincing tests such as correlations, cross‐validations and prediction based on predicted output and, therefore, is deemed to be reliable.Findings – It is shown that the combination of the feedforward neural networks and RPROP algorithms is very useful and effective in modelling systems with high non‐linearity and other complex characteristics. It is always important to attain a model with minimum number of neurons in different layers of the network by overcoming the possibility of getting stuck in the shallow local minimum of error function by using RPROP algorithm.Research limitations/implications – The system is modelled off‐line. On‐line modelling will be required for real‐time control purpose.Practical implications – The non‐linear modelling approach presented in this study is shown to be appropriately applicable to model new generations' air vehicles and other complex mechatronic systems such as TRMS. So, the approach will be appealing to industrial applications.Originality/value – This paper addresses the problems of modelling modern sophisticated non‐linear systems with complex characteristics and uncertain dynamics.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 September 1962

W. Stewart

IN the September, 1956, issue of AIRCRAFT ENGINEERING, Mr McClements and Sq./Ldr. Armitagc surveyed ‘Helicopter Developments during the Post‐War Years’. The purpose of the present…

Abstract

IN the September, 1956, issue of AIRCRAFT ENGINEERING, Mr McClements and Sq./Ldr. Armitagc surveyed ‘Helicopter Developments during the Post‐War Years’. The purpose of the present article is to discuss the subsequent developments which have taken place during the last six years. This period has been one of continued expansion in helicopter development and of much more widespread utilization of helicopters in both military and commercial operation. Since their initial development, over 150 different types of helicopter have been successfully flown. This figure includes many experimental machines or prototypes built by small groups. The major helicopter constructors have put about 40 types into quantity production and over 10,000 helicopters have been built in the Western countries. These have been predominantly for the military services, the large majority being built in U.S.A., but something approaching 2,000 have been used in commercial operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 10 of 49