Search results

1 – 10 of over 1000
Article
Publication date: 16 December 2019

Francisco-Javier Granados-Ortiz, Joaquin Ortega-Casanova and Choi-Hong Lai

Impinging jets have been widely studied, and the addition of swirl has been found to be beneficial to heat transfer. As there is no literature on Reynolds-averaged Navier Stokes…

Abstract

Purpose

Impinging jets have been widely studied, and the addition of swirl has been found to be beneficial to heat transfer. As there is no literature on Reynolds-averaged Navier Stokes equations (RANS) nor experimental data of swirling jet flows generated by a rotating pipe, the purpose of this study is to fill such gap by providing results on the performance of this type of design.

Design/methodology/approach

As the flow has a different behaviour at different parts of the design, the same turbulent model cannot be used for the full domain. To overcome this complexity, the simulation is split into two coupled stages. This is an alternative to use the costly Reynold stress model (RSM) for the rotating pipe simulation and the SST k-ω model for the impingement.

Findings

The addition of swirl by means of a rotating pipe with a swirl intensity ranging from 0 up to 0.5 affects the velocity profiles, but has no remarkable effect on the spreading angle. The heat transfer is increased with respect to a non-swirling flow only at short nozzle-to-plate distances H/D < 6, where H is the distance and D is the diameter of the pipe. For the impinging zone, the highest average heat transfer is achieved at H/D = 5 with swirl intensity S = 0.5. This is the highest swirl studied in this work.

Research limitations/implications

High-fidelity simulations or experimental analysis may provide reliable data for higher swirl intensities, which are not covered in this work.

Practical implications

This two-step approach and the data provided is of interest to other related investigations (e.g. using arrays of jets or other surfaces than flat plates).

Originality/value

This paper is the first of its kind RANS simulation of the heat transfer from a flat plate to a swirling impinging jet flow issuing from a rotating pipe. An extensive study of these computational fluid dynamics (CFD) simulations has been carried out with the emphasis of splitting the large domain into two parts to facilitate the use of different turbulent models and periodic boundary conditions for the flow confined in the pipe.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 July 2019

Dhanush Vittal Shenoy, Mostafa Safdari Shadloo, Jorge Peixinho and Abdellah Hadjadj

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate…

Abstract

Purpose

Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are prone to separation of the recirculation region. This paper aims to investigate such fluid flow in expansion pipe systems using direct numerical simulations. The flow in circular diverging pipes with different diverging half angles, namely, 45, 26, 14, 7.2 and 4.7 degrees, are considered. The flow is fed by a fully developed laminar parabolic velocity profile at its inlet and is connected to a long straight circular pipe at its downstream to characterise recirculation zone and skin friction coefficient in the laminar regime. The flow is considered linearly stable for Reynolds numbers sufficiently below natural transition. A perturbation is added to the inlet fully developed laminar velocity profile to test the flow response to finite amplitude disturbances and to characterise sub-critical transition.

Design/methodology/approach

Direct numerical simulations of the Navier–Stokes equations have been solved using a spectral element method.

Findings

It is found that the onset of disordered motion and the dynamics of the localised turbulence patch are controlled by the Reynolds number, the perturbation amplitude and the half angle of the pipe.

Originality/value

The authors clarify different stages of flow behaviour under the finite amplitude perturbations and shed more light to flow physics such as existence of Kelvin–Helmholtz instabilities as well as mechanism of turbulent puff shedding in diverging pipe flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2019

Konrad Nering and Kazimierz Rup

For internal flows with small values of the Reynolds number, there is often at a considerable distance from the pipe inlet cross-section a change of the flow form from laminar to…

Abstract

Purpose

For internal flows with small values of the Reynolds number, there is often at a considerable distance from the pipe inlet cross-section a change of the flow form from laminar to turbulent. To describe this phenomenon of laminar-turbulent transition in the pipe, also parallel-plate channel flow, a modified algebraic intermittency model was used. The original model for bypass transition developed by S. Kubacki and E. Dick was designed for simulating bypass transition in turbomachinery.

Design/methodology/approach

A modification of mentioned model was proposed. Modified model is suitable for simulating internal flows in pipes and parallel-plate channels. Implementation of the modified model was made using the OpenFOAM framework. Values of several constants of the original model were modified.

Findings

For selected Reynolds numbers and turbulence intensities (Tu), localization of laminar breakdown and fully turbulent flow was presented. Results obtained in this work were compared with corresponding experimental results available in the literature. It is particularly worth noting that asymptotic values of wall shear stress in flow channels and asymptotic values of axis velocity obtained during simulations are similar to related experimental and theoretical results.

Originality/value

The modified model allows precision numerical simulation in the area of transitional flow between laminar, intermittent and turbulent flows in pipes and parallel-plate channels. Proposed modified algebraic intermittency model presented in this work is described by a set of two additional partial differential equations corresponding with k-omega turbulence model presented by Wilcox (Wilcox, 2006).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Xiaoyu Liang, Wei Yang and Lingxin Zhang

– The purpose of this paper is to study numerically the rheological properties of fiber suspensions flowing through turbulent pipe flows.

Abstract

Purpose

The purpose of this paper is to study numerically the rheological properties of fiber suspensions flowing through turbulent pipe flows.

Design/methodology/approach

The work presented in this paper is derived the fluctuating equation for fiber orientation distribution function (FODF) in turbulent flows and solved using the method of characteristics. The FODF is predicted numerically. The numerical results of root-mean-square velocities generated by kinetic simulation sweeping model and are compared with the experimental data.

Findings

The fiber orientation distribution becomes wider with increasing Re. The components of the fourth-order orientation tensor increase with the increase of Re, and also increase along the radial direction and reach the maximum at the center line. The first normal stress difference is much less than the shear stress. For different Re the shear stress increases rapidly in the region far from the pipe center, and reaches its maximums at center, while the first normal stress difference decreases rapidly in the region far from the pipe center, and reaches its minimum at center finally.

Originality/value

By solving numerically the equation in a turbulent pipe flow with Reynolds number ranging from 2,500 to 1,000, the authors obtain the mean FODF which is in agreement with the experimental one qualitatively. Then the shear stress and first normal stress difference of suspensions are calculated based on the mean FODF.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2018

Abhimanyu Ghosh, Eph Sparrow and John Gorman

This paper aims to investigate and understand the fluid mechanics of piezometer rings, a device frequently encountered in engineering practice.

Abstract

Purpose

This paper aims to investigate and understand the fluid mechanics of piezometer rings, a device frequently encountered in engineering practice.

Design/methodology/approach

The investigation, implemented by numerical simulation, is based on turbulent flow in a pipe with a 90-degree bend. The pipe Reynolds numbers ranged from approximately 50,000 to 200,000. Two rings, with different dimensions, were investigated. Each ring consisted of four radially deployed straight segments of tubing which connect the pipe to a surrounding circular ring. The interconnections between the pipe and the ring were situated at 90-degree intervals around the circumference of the pipe.

Findings

The focus was directed to optimal circumferential locations of the radial connections, the optimal circumferential locations for accurate pressure measurements and the pressure drop penalty incurred by the use of a piezometer ring. For both of the investigated piezometer ring configurations, it was found that measurement locations situated just beyond the points of intermediate circumferential pressure variations were suitable for determining accurate values. The pressure drop was seen to increase because of the presence of the ring. For the smaller ring configuration, the increase in relative pressure drop was on the order 15 per cent, whereas the larger ring configuration lead to a 10 per cent increase.

Originality/value

This is the first attempt known to the authors to investigate and understand the fluid mechanics of piezometer rings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1989

Mo‐Hwa Wang and Klaus‐Jürgen Bathe

The primitive variable finite element formulation is used in a straightforward manner to solve for two turbulent pipe flows. The solution is based on the use of the Nikuradse—van…

Abstract

The primitive variable finite element formulation is used in a straightforward manner to solve for two turbulent pipe flows. The solution is based on the use of the Nikuradse—van Driest mixing‐length formula but no special wall element is employed. The finite element solutions are compared with experimental results.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 May 1930

J.W. Maccoll

THIS paper aims at giving the most important results of modern German research upon the motion of incompressible fluids. Before dealing with the latest developments, I have…

Abstract

THIS paper aims at giving the most important results of modern German research upon the motion of incompressible fluids. Before dealing with the latest developments, I have thought it advisable to give a short account of the older researches upon which the present work is based. It is hoped that this résumé will give a fairly complete survey of the methods that have led to the present insight into the hydrodynamical mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 2 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 2002

Shin‐ichi Satake and Tomoaki Kunugi

A direct numerical simulation with turbulent transport of a scalar quantity has been carried out to grasp and understand a laminarization phenomena caused by a pipe rotation. In…

1021

Abstract

A direct numerical simulation with turbulent transport of a scalar quantity has been carried out to grasp and understand a laminarization phenomena caused by a pipe rotation. In this study, the Reynolds number, which is based on a bulk velocity and a pipe diameter, was set to be constant; Reb=5283, and the rotating ratios of a wall velocity to a bulk velocity were set to be 0.5, 1.0, 2.0 and 3.0. A uniform heat‐flux was applied to the wall as a thermal boundary condition. Prandtl number of the working fluid was assumed to be 0.71. The number of computational grids used in this study was 256×128×128 in the z‐, r‐ and ϕ‐ directions, respectively. The turbulent quantities such as the mean flow, temperature fluctuations, turbulent stresses and pressure distribution and the turbulent statistics were obtained. Moreover, the Reynolds stress and the scalar flux budgets were also obtained for each rotating ratio. The turbulent drag decreases with the rotating ratio increase. The reason of this drag reduction can be considered that the additional rotational production terms appear in the azimuthal turbulence component. The contributions of convection and production terms to the radial scalar flux budget and also to the balance with temperature‐pressure gradient term are significant. The dissipation and viscous diffusion terms are negligible in higher rotating ratio.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2019

Ali Belhocine and Wan Zaidi Wan Omar

This study aims to investigate numerically a two-dimensional fully developed mean turbulent fluid flow, and heat transfer in a circular duct is numerically investigated using…

Abstract

Purpose

This study aims to investigate numerically a two-dimensional fully developed mean turbulent fluid flow, and heat transfer in a circular duct is numerically investigated using FORTRAN 95 code that applies the finite difference method to solve the thermal problem for the two thermal boundary conditions, constant surface temperature, constant heat and steady, axisymmetric flow. Several important results have been drawn and discussed from thermal analysis. Finally, the numerical results of the model developed in the document have been validated in good accuracy by comparing them with some correlation results available in the specialized literature.

Design/methodology/approach

The methodology of solving the thermal problem is based on the equation of energy for a fluid of constant properties while taking into consideration the hypothesis of the axisymmetric and fully developed pipe flow in steady state. The global equation and the initial and boundary conditions acting on the problem have been configured here in dimensionless form to predict the turbulent behavior of the fluid inside the tube. Thus, using Thomas' algorithm, a program in FORTRAN version 95 was developed to numerically solve the discretized form of the system of equations describing the problem.

Findings

The profiles of the solutions are provided from which the authors infer that the numerical and literature correlation agreed very well. Another result that they obtained from this study is the number of Nusselt in the thermal entrance region to which a parametric study based on Reynolds and Peclet numbers, and the longitudinal coordinate, was carried out and discussed well for the impact of the scientific contribution.

Originality/value

The novelty of the work is the application of the finite difference method programed on the FORTRAN code, as a sequential numerical method of an ODEs system, to determine the number of Nusselt in both uniform wall temperature and wall heat flux uniform.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000