Search results

1 – 10 of 27
Article
Publication date: 3 November 2023

Arun G. Nair, Tide P.S. and Bhasi A.B.

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the…

Abstract

Purpose

The mixing of fuel and air plays a pivotal role in enhancing combustion in supersonic regime. Proper mixing stabilizes the flame and prevents blow-off. Blow-off is due to the shorter residence time of fuel and air in the combustor, as the flow is in supersonic regime. The flame is initiated in the local subsonic region created using a flameholder within the supersonic combustor. This study aims to design an effective flameholder which increases the residence time of fuel in the combustor allowing proper combustion preventing blow-off and other instabilities.

Design/methodology/approach

The geometry of the strut-based flameholder is altered in the present study to induce a streamwise motion of the fluid downstream of the strut. The streamwise motion of the fluid is initiated by the ramps and grooves of the strut geometry. The numerical simulations were carried out using ANSYS Fluent and are validated against the available experimental and numerical results of cold flow with hydrogen injection using plain strut as the flameholder. In the present study, numerical investigations are performed to analyse the effect on hydrogen injection in strut-based flameholders with ramps and converging grooves using Reynolds-averaged Navier–Stokes equation coupled with Menter’s shear stress transport k-ω turbulence model. The analysis is done to determine the effect of geometrical parameters and flow parameter on the flow structures near the base of the strut where thorough mixing takes place. The geometrical parameters under consideration include the ramp length, groove convergence angle, depth of the groove, groove compression angle and the Mach number. Two different strut configurations, namely, symmetric and asymmetric struts were also studied.

Findings

Higher turbulence and complex flow structures are visible in asymmetric strut configuration which develops better mixing of hydrogen and air compared to symmetric strut configuration. The variation in the geometric parameters develop changes in the fluid motion downstream of the strut. The fluid passing through the converging grooves gets decelerated thereby reducing the Mach number by 20% near the base of the strut compared to the straight grooved strut. The shorter ramps are found to be more effective, as the pressure variation in lateral direction is carried along the strut walls downstream of the strut increasing the streamwise motion of the fluid. The decrease in the depth of the groove increases the recirculation zone downstream of the strut. Moreover, the increase in the groove compression angle also increases the turbulence near the base of the strut where the fuel is injected. Variation in the injection port location increases the mixing performance of the combustor by 25%. The turbulence of the fuel jet stream is considerably changed by the increase in the injection velocity. However, the change in the flow field properties within the flow domain is marginal. The increase in fuel mass flow rate brings about considerable change in the flow field inducing stronger shock structures.

Originality/value

The present study identifies the optimum geometry of the strut-based flameholder with ramps and converging grooves. The reaction flow modelling may be performed on the strut geometry incorporating the design features obtained in the present study.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 December 2023

Luca Sciacovelli, Aron Cannici, Donatella Passiatore and Paola Cinnella

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible…

Abstract

Purpose

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible turbulent boundary layers (TBLs) over flat plates.

Design/methodology/approach

A direct numerical simulation (DNS) database of TBLs, covering a wide range of thermodynamic conditions, is presented and exploited to perform a priori analyses of classical and recent closures for turbulent models. The results are systematically compared to the “exact” terms computed from DNS.

Findings

The few compressibility corrections available in the literature are not found to capture DNS data much better than the uncorrected original models, especially at the highest Mach numbers. Turbulent mass and heat fluxes are shown not to follow the classical gradient diffusion model, which was shown instead to provide acceptable results for modelling the vibrational turbulent heat flux.

Originality/value

The main originality of the present paper resides in the DNS database on which the a priori tests are conducted. The database contains some high-enthalpy simulations at large Mach numbers, allowing to test the performances of the turbulence models in the presence of both chemical dissociation and vibrational relaxation processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2024

Insong Kim, Hakson Jin, Kwangsong Ri, Sunbong Hyon and Cholhui Huang

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable…

Abstract

Purpose

A combustor design is a particularly important and difficult task in the development of gas turbine engines. During studies for accurate and easy combustor design, reasonable design methodologies have been established and used in engine development. The purpose of this paper is to review the design methodology for combustor in development of advanced gas turbine engines. The advanced combustor development task can be successfully achieved in less time and at lower cost by adopting new and superior design methodologies.

Design/methodology/approach

The review considers the main technical problems (combustion, cooling, fuel injection and ignition technology) in the development of modern combustor design and deals with combustor design methods by dividing it into preliminary design, performance evaluation, optimization and experiment. The advanced combustion and cooling technologies mainly used in combustor design are mentioned in detail. In accordance with the modern combustor design method, the design mechanisms are considered and the methods used in every stage of the design are reviewed technically.

Findings

The improved performances and strict emission limits of gas turbine engines require the application of advanced technologies when designing combustors. The optimized design mechanism and reasonable performance evaluation methods are very important in reducing experiments and increasing the effectiveness of the design.

Originality/value

This paper provides a comprehensive review of the design methodology for the advanced gas turbine engine combustor.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 July 2023

Mehdi Mohamadi and AmirMahdi Tahsini

The purpose of this study is to investigate the combustion of the n-Heptane droplets in the supersonic combustor with a cavity-based fuel injection configuration. The focus is on…

Abstract

Purpose

The purpose of this study is to investigate the combustion of the n-Heptane droplets in the supersonic combustor with a cavity-based fuel injection configuration. The focus is on the impacts of the droplet size on combustion efficiency.

Design/methodology/approach

The finite volume solver is developed to simulate the two-phase reacting turbulent compressible flow using a single step reaction mechanism as finite rate chemistry. Three different fuel injection settings are studied for the considered physical geometry and flow conditions: the gas fuel injection, small droplet liquid fuel injection and big droplet fuel. The fuel is injected as a slot wall jet from the bottom of the cavity.

Findings

The results show that using the small droplet size, the complete fuel consumption and combustion efficiency can be achieved but using the big droplet sizes, most fuel exit the combustor in the liquid phase and gasified unburned fuel. It is also demonstrated that the cavity's temperature distribution of the liquid fuel case is different from the gas fuel, and two flame branches are observed there due to the droplet evaporation and combustion in the cavity.

Originality/value

To the best of the authors’ knowledge, this study is performed for the first time on the combustion of the n-Heptane fuel droplets in scramjet configuration, which is promising propulsion system for the future economic flights.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

31

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 February 2024

Rahim Şibil

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of near-wall treatment approaches, which are crucial parameters in predicting the flow characteristics of open channels, and the influence of different vegetation covers in different layers.

Design/methodology/approach

Ansys Fluent, a computational fluid dynamics software, was used to calculate the flow and turbulence characteristics using a three-dimensional, turbulent (k-e realizable), incompressible and steady-flow assumption, along with various near-wall treatment approaches (standard, scalable, non-equilibrium and enhanced) in the vegetated channel. The numerical study was validated concerning an experimental study conducted in the existing literature.

Findings

The numerical model successfully predicted experimental results with relative error rates below 10%. It was determined that nonequilibrium wall functions exhibited the highest predictive success in experiment Run 1, standard wall functions in experiment Run 2 and enhanced wall treatments in experiment Run 3. This study has found that plant growth significantly alters open channel flow. In the contact zones, the velocities and the eddy viscosity are low, while in the free zones they are high. On the other hand, the turbulence kinetic energy and turbulence eddy dissipation are maximum at the solid–liquid interface, while they are minimum at free zones.

Originality/value

This is the first study, to the best of the author’s knowledge, concerning the performance of different near-wall treatment approaches on the prediction of vegetation-covered open channel flow characteristics. And this study provides valuable insights to improve the hydraulic performance of open-channel systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 27