Search results

1 – 10 of 114
Article
Publication date: 17 June 2019

Jafar Nejadali

Regenerative flow pumps are dynamic machines with the ability to develop high heads at low flow rates. Simplicity, compactness, stable features and low manufacturing costs make…

Abstract

Purpose

Regenerative flow pumps are dynamic machines with the ability to develop high heads at low flow rates. Simplicity, compactness, stable features and low manufacturing costs make them interesting for many applications in industries. The purpose of this study is to present a new method for calculating the flow through regenerative pumps with bucket form blades to predict the performance curves by a cheap and easy-to-use way.

Design/methodology/approach

The analysis was carried out based on the geometric shape of a fluid particle trajectory in a regenerative turbomachine. The fluid particle path was assumed to be a helix wrapped into a torus. Loss models were considered and the results of predictions were compared with computational fluid dynamics (CFD) data.

Findings

The overall trend of performance curves resulted from presented model looked consistent with CFD data. However, there were slight differences in high and low flow coefficients. The results showed that the predicted geometric shape of the flow path with the presented model (a helix wrapped into a torus) was not consistent with CFD results at high flow coefficients. Due to the complexity and turbulence of the fluid flow and errors in the calculation of losses, as well as slip factor, there was a discrepancy between the results of the presented model and numerical simulation, especially in high and low flow coefficients.

Originality/value

The analysis was carried out based on the geometric shape of a fluid particle trajectory in a regenerative turbomachine with bucket form blades. The fluid particle path was assumed to be a helix wrapped into a torus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2008

R. Aghaei tog, A.M. Tousi and A. Tourani

The purpose of this paper is to show the superior turbulence method in CFD analysis of radial turbo machines and to introduce the best way to choose turbulence parameters whenever…

2509

Abstract

Purpose

The purpose of this paper is to show the superior turbulence method in CFD analysis of radial turbo machines and to introduce the best way to choose turbulence parameters whenever FLUENT user applies this software as a complementary design tool for high‐speed turbo machinery components.

Design/methodology/approach

One of the most important issues in CFD is analysis of flow field in turbo machines. Flow in high‐speed radial turbo machinery is a 3D, turbulent and unsteady behavior so needs suitable method for converging. It is clear that the turbulence model has an extraordinary effect on investigation of 3D flows in high‐speed turbo machinery. A centrifugal compressor of micro and radial turbines have been designed and simulated 3D using the commercial CFD‐code FLUENT 6. Three turbulence models kε/standard, renormalization‐group (RNG) and RSM were considered and results of three models were compared with experimental and 1D design results.

Findings

The study showed numerical results are compatible with experimental performance data. It determined that RNG method in CFD analysis of radial turbo machines has provided better results than the standard kε method. In addition, when using the RNG method, the phenomena of flow field were more visible than other methods.

Originality/value

This paper offers use of the RNG method as a superior turbulence method in CFD analysis of radial turbo machines.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 11 April 2021

Lakhdar Bourabia, Cheikh Brahim Abed, Mahfoudh Cerdoun, Smail Khalfallah, Michaël Deligant, Sofiane Khelladi and Taha Chettibi

The purpose of this paper is the development of a new turbocharger compressor is a challenging task particularly when both wider operating range and higher efficiency are…

Abstract

Purpose

The purpose of this paper is the development of a new turbocharger compressor is a challenging task particularly when both wider operating range and higher efficiency are required. However, the cumbersome design effort and the inherent calculus burden can be significantly reduced by using appropriate design optimization approaches as an alternative to conventional design techniques.

Design/methodology/approach

This paper presents an optimization-based preliminary-design (OPD) approach based on a judicious coupling between evolutionary optimization techniques and a modified one-dimensional mean-line model. Two optimization strategies are considered. The first one is mono-objective and is solved using genetic algorithms. The second one is multi-objective and it is handled using the non-dominated sorting genetic algorithm-II. The proposed approach constitutes an automatic search process to select the geometrical parameters of the compressor, ensuring the most common requirements of the preliminary-design phase, with a minimum involvement of the designer.

Findings

The obtained numerical results demonstrate that the proposed tool can rapidly produce nearly optimal designs as an excellent basis for further refinement in the phase by using more complex analysis methods such as computational fluid dynamics and meta-modeling.

Originality/value

This paper outlines a new fast OBPD approach for centrifugal compressor turbochargers. The proposal adopts an inverse design method and consists of two main phases: a formulation phase and a solution phase. The complexity of the formulated problem is reduced by using a sensitivity analysis. The solution phase requires to link, in an automatic way, three processes, namely, optimization, design and analysis.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2011

J.M. Fernández Oro, K.M. Argüelles Diaz, C. Santolaria Morros and M. Galdo Vega

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Abstract

Purpose

The purpose of this paper is to focus on the analysis of the dynamic and periodic interaction between both fixed and rotating blade rows in a single‐stage turbomachine.

Design/methodology/approach

A numerical three‐dimensional (3D) simulation of the complete stage is carried out, using a commercial code, FLUENT, that resolves the 3D, unsteady turbulent flow inside the passages of a low‐speed axial flow fan. For the closure of turbulence, both Reynolds‐averaged Navier‐Stokes modeling and large eddy simulation (LES) techniques are used and compared. LES schemes are shown to be more accurate due to their good description of the largest eddy structures of the flow, but require careful near‐wall treatment.

Findings

The main goal is placed on the characterization of the unsteady flow structures involved in an axial flow blower of high reaction degree, relating them to working point variations and axial gap modifications.

Research limitations/implications

Complementarily, an experimental facility was developed to obtain a physical description of the flow inside the machine. Both static and dynamic measurements were used in order to describe the interaction phenomena. A five‐hole probe was employed for the static characterization, and hot wire anemometry techniques were used for the instantaneous response of the interaction.

Originality/value

The paper describes development of a methodology to understand the flow mechanisms related to the blade‐passing frequency in a single rotor‐stator interaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Jafar Nejad, Alireza Riasi and Ahmad Nourbakhsh

Regenerative flow pump (RFP) is a rotodynamic turbomachine capable of developing high pressure rise at low flow rates. This paper aims to numerically investigate the performance…

Abstract

Purpose

Regenerative flow pump (RFP) is a rotodynamic turbomachine capable of developing high pressure rise at low flow rates. This paper aims to numerically investigate the performance of a regenerative pump considering the modification in blade and casing geometry.

Design/methodology/approach

The radial blade shape was changed to the bucket form and a core is added to flow path. A parametric study was performed to improve the performance of the pump. Thus, the effect of change in blade angle, chord, height, pitch to chord ratio and also inlet port on the performance of RFP was investigated.

Findings

Results showed that the modified blade angle to achieve the maximum efficiency is about 41 degree. Also, the most efficient point occurs close to pitch/chord = 0.4 and by reducing the axial chord, efficiency of the pump increases. It was found that better efficiency will be achieved by increasing the “Arc of admission”, but there are limitations of manufacturing. It was observed that the performance curves shifted towards lower flow coefficients by reducing height of blades.

Originality/value

To improve the characteristics of regenerative pump, the blade shape changed to the bucket form (airfoil blades with identical inlet and outlet angle) and a core is added to flow path. A parametric study has been accomplished to see the influence of some important parameters on the performance of the pump.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Olga Willner, Daryl Powell, Markus Gerschberger and Paul Schönsleben

The purpose of this paper is to conceptualize archetypes of engineer-to-order (ETO) to support companies in determining the appropriate degree of design standardization and…

2480

Abstract

Purpose

The purpose of this paper is to conceptualize archetypes of engineer-to-order (ETO) to support companies in determining the appropriate degree of design standardization and automation, and as a result achieve superior performance. Products of ETO manufacturers are classified in a 2×2 matrix using annual units sold and engineering complexity as dimensions.

Design/methodology/approach

This research adopted a theory refining approach based on multiple case studies. Seven ETO manufacturers from different industry sectors participated in the study. Data collection was primarily based on a series of in-depth interviews supported by observations and archival sources.

Findings

The paper proposes four distinct archetypes of ETO (complex, basic, repeatable, and non-competitive) and empirically validates three of them. The organizational structures and processes most suitable for the different archetypes are described, and standardization and automation strategies are linked to the quadrants of the matrix. The matrix can support practitioners in making strategic choices and provides a framework for benchmarking their ETO products and processes.

Originality/value

Existing conceptualizations of ETO consider the company as the primary object of investigation, rather than the product or product family. However, companies often have different product families demanding different strategies. Also, there is little or no focus on the engineering perspective. The authors move the engineering perspective to the center of investigation and identify a set of standardization and automation strategies for different types of ETO products.

Details

International Journal of Operations & Production Management, vol. 36 no. 3
Type: Research Article
ISSN: 0144-3577

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 1966

R.J. Lane

THE problem of providing engines suitable for high Mach number aircraft is a fascinating study which at the moment has only been taken to the stage where many solutions look…

Abstract

THE problem of providing engines suitable for high Mach number aircraft is a fascinating study which at the moment has only been taken to the stage where many solutions look feasible, thus the choice of engines for the different roles for which high Mach number aircraft may be used is still fairly wide open.

Details

Aircraft Engineering and Aerospace Technology, vol. 38 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 November 2007

M. Taha Janan and A. El Marjani

This paper aims to develop an efficient numerical method for simulating multicomponent flows by solving the system of conservative equations closed by a general two parameters…

Abstract

Purpose

This paper aims to develop an efficient numerical method for simulating multicomponent flows by solving the system of conservative equations closed by a general two parameters equation of state.

Design/methodology/approach

A finite difference method for solving the two‐dimensional Euler or Navier‐Stokes equations for multicomponent flows in a general curvilinear coordinate system is developed. The system of conservative equations (mass, momentum and energy) is closed with a general two parameters equation of state (ρe=(p+γp)/(γ−1)), which, associated to a γ‐formulation, allows easy computation of multicomponent flows. In order to enforce the stability of the numerical scheme, the Roe's flux‐difference splitting is adopted for the numerical treatment of the inviscid fluxes. The method is adapted to treat also unsteady flows by implementing an explicit Euler scheme.

Findings

The method was applied to compute various configurations of flows, ranging from incompressible to compressible fluid, including cases of single component flows or multicomponent ones. Computations show that the use of primitive variables instead of conservative ones, especially at low Mach numbers, improves the iteration process when the resolution is performed with a relaxation procedure such as Gauss‐Seidel method. Simulations of compressible flows with a strong shock show the ability of the present method to capture shocks correctly even with the use of primitive variables. To complete numerical tests, flows involving two fluids with the presence of interactions between a shock and a discontinuity surface have been treated successfully. Also, a case of cavitating flow has been considered in this work.

Originality/value

The present method permits the simulation of a large variety of multicomponent complexes flows with an efficient numerical taking advantage of Roe's flux‐difference splitting in curvilinear coordinate system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Xianbei Huang, Yaojun Li, Zhuqing Liu and Wei Yang

The purpose of this paper is to obtain a better understanding of the rotor–stator interaction in the vaneless region of a centrifugal pump.

Abstract

Purpose

The purpose of this paper is to obtain a better understanding of the rotor–stator interaction in the vaneless region of a centrifugal pump.

Design/methodology/approach

A third-order sub-grid scale (SGS) model containing the rotation rate tensor named the dynamic cubic non-linear model (DCNM) is used for simulating the flow field in a centrifugal pump with a vaned diffuser. The pressure coefficient and velocity distributions are compared with the experimental data. Focusing on the vaneless region, the pressure pulsation, Reynolds stress pulsation and Reynolds stress transport equation are analyzed.

Findings

The comparison of the calculation results with the experimental data indicates that the DCNM can accurately capture the distributions of pressure and velocity in the vaneless region. Based on the instantaneous pressure signals, the pressure pulsation is analyzed to show that in the vaneless region, the dominant frequency near the impeller is twice the blade passing frequency, whereas it is equal to the blade passing frequency near the diffuser. Further exploration of the Reynolds stress pulsation shows the correlation between the two variables. Additionally, the extreme low frequency of Reynolds stress near the diffuser is found to be related to the rotation instability. To explore the turbulence characteristics in the vaneless region, the Reynolds stress transportation equation is studied. In the vaneless region, the rotation term of the Reynolds stress transport equation is negligible compared to the production term, although the rotation instability is obvious near the diffuser. The production of the Reynolds stress plays the role of redistributing the energy from the uu component to the vv component, except for the region near the impeller outlet.

Originality/value

The third-order SGS model DCNM has proved to be promising in simulating the rotor–stator interaction. The analysis of the rotation instability and the Reynolds stress transport equation shed light on the further understanding of the rotor–stator interaction.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 114