Search results

1 – 10 of 790
Article
Publication date: 4 July 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on…

7835

Abstract

Purpose

This paper seeks to evaluate the potential of heat exchanged aeroengines for future Unmanned Aerial Vehicle (UAV), helicopter, and aircraft propulsion, with emphasis placed on reduced emissions, lower fuel burn, and less noise.

Design/methodology/approach

Aeroengine performance analyses were carried out covering a wide range of parameters for more complex thermodynamic cycles. This led to the identification of major component features and the establishing of preconceptual aeroengine layout concepts for various types of recuperated and ICR variants.

Findings

Novel aeroengine architectures were identified for heat exchanged turboshaft, turboprop, and turbofan variants covering a wide range of applications. While conceptual in nature, the results of the analyses and design studies generally concluded that heat exchanged engines represent a viable solution to meet demanding defence and commercial aeropropulsion needs in the 2015‐2020 timeframe, but they would require extensive development.

Research limitations/implications

As highlighted in Parts I and II, early development work was focused on the use of recuperation, but this is only practical with compressor pressure ratios up to about 10. For today's aeroengines with pressure ratios up to about 50, improvement in SFC can only be realised by incorporating intercooling and recuperation. The new aeroengine concepts presented are clearly in an embryonic stage, but these should enable gas turbine and heat exchanger specialists to advance the technology by conducting more in‐depth analytical and design studies to establish higher efficiency and “greener” gas turbine aviation propulsion systems.

Originality/value

It is recognised that meeting future environmental and economic requirements will have a profound effect on aeroengine design and operation, and near‐term efforts will be focused on improving conventional simple‐cycle engines. This paper has addressed the longer‐term potential of heat exchanged aeroengines and has discussed novel design concepts. A deployment strategy, aimed at gaining confidence with emphasis placed on assuring engine reliability, has been suggested, with the initial development and flight worthiness test of a small recuperated turboprop engine for UAVs, followed by a larger recuperated turboshaft engine for a military helicopter, and then advancement to a larger and far more complex ICR turbofan engine.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 21 May 2020

Ridvan Oruc and Tolga Baklacioglu

The purpose of this paper is to create high-accuracy thrust modelling for cruise flight using particle swarm optimization (PSO) algorithm.

Abstract

Purpose

The purpose of this paper is to create high-accuracy thrust modelling for cruise flight using particle swarm optimization (PSO) algorithm.

Design/methodology/approach

In this study, using PSO, new thrust models with high accuracy for the cruise flight stages of Pratt & Whitney JT9D-3, JT15D-4C and TF-30 engines were created. For this aim, real Mach number, flight altitude and thrust values taken from the engine manufacturers were used. In the model, thrust is given as a function of altitude and Mach number. The sensitivity of the results given by the PSO thrust model has been examined using several different error types. Finally, the effect of some PSO parameters on the created models is examined.

Findings

It was observed that the model created predicted real thrust values with high precision.

Practical implications

The PSO thrust model can be used in the trajectory estimates of today’s aircraft with the use of accurate scaling factors. In addition, using the developed PSO thrust model together with a correct aerodynamic model provides more effective management of air traffic flow in air traffic management applications. Combining the PSO model with fuel flow-rate models will significantly increase engine efficiency and performance; thus, making a major contribution to reducing engine emissions.

Originality/value

The originality of this study is that it is the first thrust modelling made with PSO in the literature for turbofan engines. The use of real data in the study and the creation of models for several different turbofan engines are important for the reliability of thrust models.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 February 2022

Shouvik Bandopadhyay, Tanooj Jagdeep, Koshika Pandey, Nishchay Sadrani and Kannan B.T.

This study aims to propose a novel configuration for turbofan engine inlets to increase the overall effectiveness of the engine.

Abstract

Purpose

This study aims to propose a novel configuration for turbofan engine inlets to increase the overall effectiveness of the engine.

Design/methodology/approach

Conventional fan has been split radially into two blisk stages, namely, core blisk and bypass blisk. The two blisks are driven by a common shaft but rotate at two different revolutions per minutes (RPMs) on the same plane of rotation simultaneously through a planetary gear mechanism. To avoid any mechanical contact between the two stages, a minimum optimum distance is kept between them.

Findings

An apt reduction ratio of planetary gears allows the bypass blisk to rotate at a lower RPM. Thus, unlike conventional geared single fan configuration, transonic speed at the blade’s tip is prevented without decreasing the core stage’s RPM. Consequently, wave drag is eradicated without compromising the engine's core performance as surplus air can always be supplied to it. Compressor stall and surge can also be significantly reduced.

Research limitations/implications

The concept is at its infancy. Extensive iterations and experimentations are required before implementing it practically.

Practical implications

The configuration fulfils to conceive a practical and industrially scalable method to extract better performance from existing engine architecture with minimal changes while reducing noise and emissions, meeting the short-term emission and noise goals unless electric or hydrogen-powered flight fully matured.

Social implications

The present concept reduces engine noise and thereby helps in reduction of airport noise pollution. This concept also helps in reducing global warming by reducing emissions.

Originality/value

The paper presents a novel configuration for a turbofan engine’s inlet fan and discusses its engineering implications and initial feasibility in detail.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 March 2018

Yasin Şöhret and T. Hikmet Karakoc

It is essential to develop more environment-friendly energy systems to prevent climate change and minimize environmental impact. Within this scope, many studies are performed on…

Abstract

Purpose

It is essential to develop more environment-friendly energy systems to prevent climate change and minimize environmental impact. Within this scope, many studies are performed on performance and environmental assessments of many types of energy systems. This paper, different from previous studies, aims to prove exergy performance of a low-emission combustor of an aero-engine.

Design/methodology/approach

It is a well-known fact that, with respect to previous exergy analysis, highest exergy destruction occurs in the combustor component of the engine. For this reason, it is required to evaluate a low-emission aero-engine combustor thermodynamically to understand the state of the art according to the authors’ best of knowledge. In this framework, combustor has been operated at numerous conditions (variable engine load) and evaluated.

Findings

As a conclusion of the study, the impact of emission reduction on performance improvement of the aero-engine combustors exergetically is presented. It is stated that exergy efficiency of the low-emission aero-engine combustor is found to be 64.69, 61.95 and 71.97 per cent under various operating conditions.

Practical implications

Results obtained in this paper may be beneficial for researchers who are interested in combustion and propulsion technology and thermal sciences.

Originality/value

Different from former studies, the impact of operating conditions on performance of a combustor is examined from the viewpoint of thermodynamics.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 May 2008

Colin F. McDonald, Aristide F. Massardo, Colin Rodgers and Aubrey Stone

To advance the design of heat exchanged gas turbine propulsion aeroengines utilising experience gained from early development testing, and based on technologies prevailing in the…

3531

Abstract

Purpose

To advance the design of heat exchanged gas turbine propulsion aeroengines utilising experience gained from early development testing, and based on technologies prevailing in the 1970‐2000 time frame.

Design/methodology/approach

With emphasis on recuperated helicopter turboshaft engines, particularly in the 1,000 hp (746 kW) class, detailed performance analyses, parametric trade‐off studies, and overall power plant layouts, based on state‐of‐the‐art turbomachinery component efficiencies and high‐temperature heat exchanger technologies, were undertaken for several engine configuration concepts.

Findings

Using optimised cycle parameters, and the selection of a light weight tubular heat exchanger concept, an attractive engine architecture was established in which the recuperator was fully integrated with the engine structure. This resulted in a reduced overall engine weight and lower specific fuel consumption, and represented a significant advancement in technology from the modified simple‐cycle engines tested in the late 1960s.

Practical implications

While heat exchanged engine technology advancements were projected, there were essentially two major factors that essentially negated the continued study and development of recuperated aeroengines, namely again as mentioned in Part I, the reduced fuel consumption was not regarded as an important economic factor in an era of low‐fuel cost, and more importantly in this time frame very significant simple‐cycle engine performance advancements were made with the use of significantly higher pressure ratios and increased turbine inlet temperatures. Simply stated, recuperated variants could not compete with such a rapidly moving target.

Originality/value

Establishing an engine design concept in which the recuperator was an integral part of the engine structure to minimise the overall power plant weight was regarded as a technical achievement. Such an approach, together with the emergence of lighter weight recuperators of assured structural integrity, would find acceptance around the year 2000 when there was renewed interest in the use of more efficient heat exchanged variants towards the future goal of establishing “greener” aeroengines, and this is discussed in Part III of this paper.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 October 1982

Rolls‐Royce Limited designs and manufactures gas turbine engines for a wide range of aircraft, marine and industrial applications.

Abstract

Rolls‐Royce Limited designs and manufactures gas turbine engines for a wide range of aircraft, marine and industrial applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 54 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1967

A description of the Spey Junior bypass turbofan engine used in the Fellowship. The F.28 is powered by two Rolls‐Royce RB 183‐2 Spey Junior bypass turbofan engines, designed Mk…

Abstract

A description of the Spey Junior bypass turbofan engine used in the Fellowship. The F.28 is powered by two Rolls‐Royce RB 183‐2 Spey Junior bypass turbofan engines, designed Mk. 555‐15. This engine is a lightened and simplified version of the Spey RB. 163‐2 engine which in different versions powers the HS. Trident 1 (Mk. 505‐5) and B.A.C. One‐Eleven 200 series (Mk. 506‐14 AW, 510‐14) and is similarly rated at a minimum I.S.A. sea level take‐off thrust of 9,850 lb. During cruise at 25,000 ft. and M = ·75 the specific fuel consumption is ·796 lb/hr/lb.

Details

Aircraft Engineering and Aerospace Technology, vol. 39 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 1961

D.J. Ritchie

THIS paper is not intended to provide any startling revelations of Soviet technology but is a detailed survey and analysis of contemporary developments in Soviet turbine powered…

Abstract

THIS paper is not intended to provide any startling revelations of Soviet technology but is a detailed survey and analysis of contemporary developments in Soviet turbine powered transport aircraft. The major portion of the work is based on Soviet sources of information in an attempt to assure authenticity and accuracy.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 May 2017

Ali Dinc

This paper aims to present a genuine code developed for multi-objective optimization of selected parameters of a turboprop unmanned air vehicle (UAV) for minimum landing-takeoff…

Abstract

Purpose

This paper aims to present a genuine code developed for multi-objective optimization of selected parameters of a turboprop unmanned air vehicle (UAV) for minimum landing-takeoff (LTO) nitrogen oxide (NOx) emissions and minimum equivalent power specific fuel consumption (ESFC) at loiter (aerial reconnaissance phase of flight) by using a genetic algorithm.

Design/methodology/approach

The genuine code developed in this study first makes computations on preliminary sizing of a UAV and its turboprop engine by analytical method for a given mission profile. Then, to minimize NOx emissions or ESFC or both of them, single and multi-objective optimization was done for the selected engine design parameters.

Findings

In single objective optimization, NOx emissions were reduced by 49 per cent from baseline in given boundaries or constraints of compressor pressure ratio and compressor polytropic efficiency in the first case. In second case, ESFC was improved by 25 per cent from baseline. In multi-objective optimization case, where previous two objectives were considered together, NOx emissions and ESFC decreased by 26.6 and 9.5 per cent from baseline, respectively.

Practical implications

Variation and trend in the NOx emission index and ESFC were investigated with respect to two engine design parameters, namely, compressor pressure ratio and compressor polytropic efficiency. Engine designers may take into account the findings of this study to reach a viable solution for the bargain between NOx emission and ESFC.

Originality/value

UAVs have different flight mission profiles or characteristics compared to manned aircraft. Therefore, they are designed in a different philosophy. As a number of UAV flights increase in time, fuel burn and LTO NOx emissions worth investigating due to operating costs and environmental reasons. The study includes both sizing and multi-objective optimization of an UAV and its turboprop engine in coupled form; compared to manned aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 1964

TO say that the Twenty‐fourth S.B.A.C. Show was an unqualified success is perhaps to gild the lily. True there were disappointments— the delay which kept the TSR‐2 on the ground…

165

Abstract

TO say that the Twenty‐fourth S.B.A.C. Show was an unqualified success is perhaps to gild the lily. True there were disappointments— the delay which kept the TSR‐2 on the ground until well after the Show being one—but on the whole the British industry was well pleased with Farnborough week and if future sales could be related to the number of visitors then the order books would be full for many years to come. The total attendance at the Show was well over 400,000—this figure including just under 300,000 members of the public who paid to enter on the last three days of the Show. Those who argued in favour of allowing a two‐year interval between the 1962 Show and this one seem to be fully vindicated, for these attendance figures are an all‐time record. This augurs well for the future for it would appear that potential customers from overseas are still anxious to attend the Farnborough Show, while the public attendance figures indicate that Britain is still air‐minded to a very healthy degree. It is difficult to pick out any one feature or even one aircraft as being really outstanding at Farnborough, but certainly the range of rear‐engined civil jets (HS. 125, BAC One‐Eleven, Trident and VCIQ) served as a re‐minder that British aeronautical engineering prowess is without parallel, while the number of rotorcraft to be seen in the flying display empha‐sized the growing importance of the helicopter in both civil and military operations. As far as the value of Farnborough is concerned, it is certainly a most useful shop window for British aerospace products, and if few new orders are actually received at Farnborough, a very large number are announced— as our ’Orders and Contracts' column on page 332 bears witness. It is not possible to cover every exhibit displayed at the Farnborough Show but the following report describes a wide cross‐section beginning with the exhibits of the major airframe and engine companies.

Details

Aircraft Engineering and Aerospace Technology, vol. 36 no. 10
Type: Research Article
ISSN: 0002-2667

1 – 10 of 790