Search results

1 – 9 of 9
Article
Publication date: 1 August 2023

M. Mary Victoria Florence and E. Priyadarshini

This study aims to propose the use of time series autoregressive integrated moving average (ARIMA) models to predict gas path performance in aero engines. The gas path is a…

82

Abstract

Purpose

This study aims to propose the use of time series autoregressive integrated moving average (ARIMA) models to predict gas path performance in aero engines. The gas path is a critical component of an aero engine and its performance is essential for safe and efficient operation of the engine.

Design/methodology/approach

The study analyzes a data set of gas path performance parameters obtained from a fleet of aero engines. The data is preprocessed and then fitted to ARIMA models to predict the future values of the gas path performance parameters. The performance of the ARIMA models is evaluated using various statistical metrics such as mean absolute error, mean squared error and root mean squared error. The results show that the ARIMA models can accurately predict the gas path performance parameters in aero engines.

Findings

The proposed methodology can be used for real-time monitoring and controlling the gas path performance parameters in aero engines, which can improve the safety and efficiency of the engines. Both the Box-Ljung test and the residual analysis were used to demonstrate that the models for both time series were adequate.

Research limitations/implications

To determine whether or not the two series were stationary, the Augmented Dickey–Fuller unit root test was used in this study. The first-order ARIMA models were selected based on the observed autocorrelation function and partial autocorrelation function.

Originality/value

Further, the authors find that the trend of predicted values and original values are similar and the error between them is small.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 October 2023

Ajay Kumar Jaiswal and Pallab Sinha Mahapatra

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer…

Abstract

Purpose

Maintaining the turbine blade’s temperature within the safety limit is challenging in high-pressure turbines. This paper aims to numerically present the conjugate heat transfer analysis of a novel approach to mini-channel embedded film-cooled flat plate.

Design/methodology/approach

Numerical simulations were performed at a steady state using SST kω turbulence model. Impingement and film cooling are classical approaches generally adopted for turbine blade analysis. The existing film cooling techniques were compared with the proposed design, where a mini-channel was constructed inside the solid plate. The impact of the blowing ratio (M), Biot number (Bi) and temperature ratio (TR) on overall cooling performance was also studied.

Findings

Overall cooling effectiveness was always shown to be higher for mini-channel embedded film-cooled plates. The effectiveness increases with increasing the blowing ratio from M = 0.3 to 0.7, then decreases with increasing blowing ratio (M = 1 and 1.4) due to lift-off conditions. The mini-channel embedded plate resulted in an approximately 21% increase in area-weighted average overall effectiveness at a blowing ratio of 0.7 and Bi = 1.605. The lower uniform temperature was also found for all blowing ratios at a low Biot number, where conduction heat transfer significantly impacts total cooling effectiveness.

Originality/value

To the best of the authors’ knowledge, this study presents a novel approach to improve the cooling performances of a film-cooled flat plate with better cooling uniformity by using embedded mini-channels. Despite the widespread application of microchannels and mini-channels in thermal and fluid flow analysis, the application of mini-channels for blade cooling is not explored in detail.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 April 2022

Srinivasa Acharya, Ganesan Sivarajan, D. Vijaya Kumar and Subramanian Srikrishna

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal…

77

Abstract

Purpose

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal economic dispatch is very much essential by the power system as the system requires more power generation cost and also has a great demand for electrical energy. Therefore, one of the primary difficulties in the power system is lowering the cost of power generation, which includes both economic and environmental costs. This study/paper aims to introduce a meta-heuristic algorithm, which offers an solution to the combined economic and emission dispatch (CEED).

Design/methodology/approach

A novel algorithm termed Levy-based glowworm swarm optimization (LGSO) is proposed in this work, and it provides an excellent solution to the combined economic and emission dispatch (CEED) difficulties by specifying the generation of the optimal renewable energy systems (RES). Moreover, in hybrid renewable energy systems, the proposed scheme is extended by connecting the wind turbine because the thermal power plant could not control the aforementioned costs. In terms of economic cost, emission cost and transmission loss, the suggested CEED model outperforms other conventional schemes genetic algorithm, Grey wolf optimization, whale optimization algorithm (WOA), dragonfly algorithm (DA) and glowworm swarm optimization (GSO) and demonstrates its efficiency.

Findings

According to the results, the suggested model for Iteration 20 was outperformed GSO, DA and WOA by 23.46%, 97.33% and 93.33%, respectively. For Iteration 40, the proposed LGSO was 60%, 99.73% and 97.06% better than GSO, DA and WOA methods, respectively. The proposed model for Iteration 60 was 71.50% better than GSO, 96.56% better than DA and 95.25% better than WOA. As a result, the proposed LGSO was shown to be superior to other existing techniques with respect to the least cost and loss.

Originality/value

This research introduces the latest optimization algorithm known as LGSO to provide an excellent solution to the CEED difficulties by specifying the generation of the optimal RES. To the best of the authors’ knowledge, this is the first work that utilizes LGSO-based optimization for providing an excellent solution to the CEED difficulties by specifying the generation of the optimal RES.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 March 2023

Shirin Hassanzadeh Darani, Payam Rabbanifar, Mahmood Hosseini Aliabadi and Hamid Radmanesh

The purpose of this paper is to present a new system frequency response model with participation of wind-hydro-thermal units to overcome frequency deviations.

Abstract

Purpose

The purpose of this paper is to present a new system frequency response model with participation of wind-hydro-thermal units to overcome frequency deviations.

Design/methodology/approach

The extracted minimum frequency equation is considered as a constraint in security-constrained unit commitment calculations. Because of high-order polynomials in the frequency transfer function and high degree of nonlinearity of minimum frequency constraint, Routh stability criterion method and piecewise linearization technique are used to reduce system order and linearize the system frequency response model, respectively.

Findings

The results of this paper indicate that by using this model, the hourly minimum frequency is improved and is kept within defined range.

Originality/value

This combined model can be used to evaluate the frequency of the power system following unexpected load increase or generation disturbances. It also can be used to investigate the system frequency performance and ensure power system security which are caused by peak load or loss of generation in presence of renewable energies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 March 2023

Manikandan R. and Raja Singh R.

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor…

Abstract

Purpose

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor (IGBT) faults has become an essential topic of study. Demand for sustainable energy sources has been prompted by rising environmental pollution and energy requirements. Renewable energy has been identified as a viable substitute for conventional fossil fuel energy generation. Because of its rapid installation time and adaptable expenditure for construction scale, wind energy has emerged as a great energy resource. Power converter failure is particularly significant for the reliable operation of wind power conversion systems because it not only has a high yearly fault rate but also a prolonged downtime. The power converters will continue to operate even after the failure, especially the open-circuit fault, endangering their other parts and impairing their functionality.

Design/methodology/approach

The most widely used signal processing methods for locating open-switch faults in power devices are the short-time Fourier transform and wavelet transform (WT) – based on time–frequency analysis. To increase their effectiveness, these methods necessitate the intensive use of computational resources. This study suggests a fault detection technique using empirical mode decomposition (EMD) that examines the phase currents from a power inverter. Furthermore, the intrinsic mode function’s relative energy entropy (REE) and simple logical operations are used to locate IGBT open switch failures.

Findings

The presented scheme successfully locates and detects 21 various classes of IGBT faults that could arise in a two-level three-phase voltage source inverter (VSI). To verify the efficacy of the proposed fault diagnosis (FD) scheme, the test is performed under various operating conditions of the power converter and induction motor load. The proposed method outperforms existing FD schemes in the literature in terms of fault coverage and robustness.

Originality/value

This study introduces an EMD–IMF–REE-based FD method for VSIs in wind turbine systems, which enhances the effectiveness and robustness of the FD method.

Article
Publication date: 11 October 2021

Ammar Chakhrit and Mohammed Chennoufi

This paper aims to enable the analysts of reliability and safety system to assess the criticality and prioritize failure modes perfectly to prefer actions for controlling the…

Abstract

Purpose

This paper aims to enable the analysts of reliability and safety system to assess the criticality and prioritize failure modes perfectly to prefer actions for controlling the risks of undesirable scenarios.

Design/methodology/approach

To resolve the challenge of uncertainty and ambiguous related to the parameters, frequency, non-detection and severity considered in the traditional approach failure mode effect and criticality analysis (FMECA) for risk evaluation, the authors used fuzzy logic where these parameters are shown as members of a fuzzy set, which fuzzified by using appropriate membership functions. The adaptive neuro-fuzzy inference system process is suggested as a dynamic, intelligently chosen model to ameliorate and validate the results obtained by the fuzzy inference system and effectively predict the criticality evaluation of failure modes. A new hybrid model is proposed that combines the grey relational approach and fuzzy analytic hierarchy process to improve the exploitation of the FMECA conventional method.

Findings

This research project aims to reflect the real case study of the gas turbine system. Using this analysis allows evaluating the criticality effectively and provides an alternate prioritizing to that obtained by the conventional method. The obtained results show that the integration of two multi-criteria decision methods and incorporating their results enable to instill confidence in decision-makers regarding the criticality prioritizations of failure modes and the shortcoming concerning the lack of established rules of inference system which necessitate a lot of experience and shows the weightage or importance to the three parameters severity, detection and frequency, which are considered to have equal importance in the traditional method.

Originality/value

This paper is providing encouraging results regarding the risk evaluation and prioritizing failures mode and decision-makers guidance to refine the relevance of decision-making to reduce the probability of occurrence and the severity of the undesirable scenarios with handling different forms of ambiguity, uncertainty and divergent judgments of experts.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Ali M. AlQahtani

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents…

Abstract

Purpose

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents a comprehensive analysis of the wind resources in Jubail Industrial City and proposes the design of a smart grid-connected wind farm for this strategic location.

Design/methodology/approach

The study used wind data collected at three different heights above ground level – 10, 50 and 90 m – over four years from 2017 to 2020. Key parameters, such as average wind speeds (WS), predominant wind direction, Weibull shape, scale parameters and wind power density (WPD), were analyzed. The study used Windographer, an exclusive software program designed to evaluate wind resources.

Findings

The average WS at the respective heights were 3.07, 4.29 and 4.58 m/s. The predominant wind direction was from the north-west. The Weibull shape parameter (k) at the three heights was 1.77, 2.15 and 2.01, while the scale parameter (c) was 3.36, 4.88 and 5.33 m/s. The WPD values at different heights were 17.9, 48.8 and 59.3 W/m2, respectively.

Originality/value

The findings suggest that Jubail Industrial City possesses favorable wind resources for wind energy generation. The proposed smart grid-connected wind farm design demonstrates the feasibility of harnessing wind power in the region, contributing to sustainable energy production and economic benefits.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 November 2023

Xuecheng Yang and Yunfei Shao

This paper aims to reveal how different types of events and top management teams' (TMTs’) cognitive frames affect the generation of breakthrough innovations.

Abstract

Purpose

This paper aims to reveal how different types of events and top management teams' (TMTs’) cognitive frames affect the generation of breakthrough innovations.

Design/methodology/approach

Drawing on the event system theory and upper echelon theory, this study chose a Chinese manufacturing enterprise as the case firm and conducted an exploratory single-case study to unpack how breakthrough innovation generates over time.

Findings

By conducting the in-depth case analysis, the study revealed that firms do not produce breakthrough innovation in the catch-up stage and parallel-running stage but achieve it in the leading stage. It also indicated that when facing proactive events in the catch-up stage, TMTs often adopt a contracted lens, being manifested as consistency orientation, less elastic organizational identity and narrower competitive boundaries. In addition, they tend to adopt a contracted lens when facing reactive and proactive events in the parallel-running stage. In the face of reactive and proactive events in the leading stage, they are more inclined to adopt an expanded lens, being manifested as a coexistence orientation, more elastic organizational identity and wider competitive boundaries.

Originality/value

First, by untangling how TMT's cognitive frame functions in breakthrough innovations, this paper provides a micro-foundation for producing breakthrough innovations and deepens the understanding of upper echelon theory by considering the cognitive dimension of TMTs. Second, by teasing out several typical events experienced by the firm, this paper is the first attempt to reveal how events affect the generation of breakthrough innovation. Third, the work extends the application of the event system theory in technological innovation. It also provides insightful implications for promoting breakthrough innovations by considering the role of proactive and reactive events a firm experiences and TMT's perceptions.

Details

Management Decision, vol. 62 no. 1
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 19 April 2022

D. Divya, Bhasi Marath and M.B. Santosh Kumar

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive…

1665

Abstract

Purpose

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive maintenance. Opportunities and challenges in developing anomaly detection algorithms for predictive maintenance and unexplored areas in this context are also discussed.

Design/methodology/approach

For conducting a systematic review on the state-of-the-art algorithms in fault detection for predictive maintenance, review papers from the years 2017–2021 available in the Scopus database were selected. A total of 93 papers were chosen. They are classified under electrical and electronics, civil and constructions, automobile, production and mechanical. In addition to this, the paper provides a detailed discussion of various fault-detection algorithms that can be categorised under supervised, semi-supervised, unsupervised learning and traditional statistical method along with an analysis of various forms of anomalies prevalent across different sectors of industry.

Findings

Based on the literature reviewed, seven propositions with a focus on the following areas are presented: need for a uniform framework while scaling the number of sensors; the need for identification of erroneous parameters; why there is a need for new algorithms based on unsupervised and semi-supervised learning; the importance of ensemble learning and data fusion algorithms; the necessity of automatic fault diagnostic systems; concerns about multiple fault detection; and cost-effective fault detection. These propositions shed light on the unsolved issues of predictive maintenance using fault detection algorithms. A novel architecture based on the methodologies and propositions gives more clarity for the reader to further explore in this area.

Originality/value

Papers for this study were selected from the Scopus database for predictive maintenance in the field of fault detection. Review papers published in this area deal only with methods used to detect anomalies, whereas this paper attempts to establish a link between different industrial domains and the methods used in each industry that uses fault detection for predictive maintenance.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 9 of 9