Search results

1 – 10 of over 1000
Article
Publication date: 2 December 2021

Saquib Rouf, Ankush Raina, Mir Irfan Ul Haq and Nida Naveed

The involvement of wear, friction and lubrication in engineering systems and industrial applications makes it imperative to study the various aspects of tribology in relation with…

Abstract

Purpose

The involvement of wear, friction and lubrication in engineering systems and industrial applications makes it imperative to study the various aspects of tribology in relation with advanced technologies and concepts. The concept of Industry 4.0 and its implementation further faces a lot of barriers, particularly in developing economies. Real-time and reliable data is an important enabler for the implementation of the concept of Industry 4.0. For availability of reliable and real-time data about various tribological systems is crucial in applying the various concepts of Industry 4.0. This paper aims to attempt to highlight the role of sensors related to friction, wear and lubrication in implementing Industry 4.0 in various tribology-related industries and equipment.

Design/methodology/approach

A through literature review has been done to study the interrelationships between the availability of tribology-related data and implementation of Industry 4.0 are also discussed. Relevant and recent research papers from prominent databases have been included. A detailed overview about the various types of sensors used in generating tribological data is also presented. Some studies related to the application of machine learning and artificial intelligence (AI) are also included in the paper. A discussion on fault diagnosis and cyber physical systems in connection with tribology has also been included.

Findings

Industry 4.0 and tribology are interconnected through various means and the various pillars of Industry 4.0 such as big data, AI can effectively be implemented in various tribological systems. Data is an important parameter in the effective application of concepts of Industry 4.0 in the tribological environment. Sensors have a vital role to play in the implementation of Industry 4.0 in tribological systems. Determining the machine health, carrying out maintenance in off-shore and remote mechanical systems is possible by applying online-real-time data acquisition.

Originality/value

The paper tries to relate the pillars of Industry 4.0 with various aspects of tribology. The paper is a first of its kind wherein the interdisciplinary field of tribology has been linked with Industry 4.0. The paper also highlights the role of sensors in generating tribological data related to the critical parameters, such as wear rate, coefficient of friction, surface roughness which is critical in implementing the various pillars of Industry 4.0.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 June 2013

Dong Jiang, Litian Hu and Dapeng Feng

The purpose of this paper is to synthesize a novel kind of crown‐type phosphate ionic liquids with better tribological properties for steel/Al system. The anions of crown‐type…

Abstract

Purpose

The purpose of this paper is to synthesize a novel kind of crown‐type phosphate ionic liquids with better tribological properties for steel/Al system. The anions of crown‐type phosphate ionic liquids contain no F element, which are non‐corrosive to metal.

Design/methodology/approach

To improve the tribological properties of ionic liquid lubricants for the extremely difficult system of the steel‐against‐aluminum metal couple, novel crown‐type phosphate ionic liquids were prepared. The tribological properties of the crown‐type phosphate ionic liquids were evaluated at different loads and frequencies on an Optical SRV oscillating friction and wear tester. The morphology and chemical compounds of the wear scars were investigated by scanning electron microscope (SEM) and X‐ray photoelectron spectroscopy (XPS).

Findings

Compared with conventional ionic liquids, the novel crown‐type phosphate ionic liquids prepared in the present work exhibit a more excellent anti‐wear ability for steel/Al2024 contact at different loads and frequencies. By the morphological analysis with SEM, less debris was observed in the worn surface lubricated with crown‐type phosphate ionic liquids, though more debris was observed when lubricated with LB106 and LP106. By the XPS analysis, boundary lubrication film composed of aluminum (III) oxide, organometallic compounds, and silicon aluminum phosphate were found in the worn surface. Namely, the tribological behaviors of the crown‐type phosphate ionic liquids could be attributed to their stronger adsorption and tribochemical interactions with the Al alloys.

Research limitations/implications

Because of the higher mean friction coefficients of crown‐type phosphate ionic liquids in the research, researchers are encouraged to modify their structure for better tribological properties.

Practical implications

The crown‐type phosphate ionic liquid exhibited better anti‐wear performance for steel/aluminum contact than the conventional ionic liquids containing F element. This will expand the application of high strength aluminum alloys.

Originality/value

The phosphate ionic liquid is a non‐corrosive liquid and would not cause metal corrosion. Also, the tribological properties of crown‐type phosphate ionic liquid with steel/aluminum contact are better than that of conventional ionic liquids. By the designing of molecular structure, new phosphate ionic liquids will exhibit excellent tribological properties: lower wear volume and lower friction coefficient.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 July 2023

Chaofan Jia, Shaolin Li, Xiuhua Guo, Juanhua Su and Kexing Song

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites…

49

Abstract

Purpose

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites under different service parameters was probed. The purpose of this study is to provide a theoretical basis for the application of CF-Al2O3/Cu composites.

Design/methodology/approach

The composites were fabricated by internal oxidation combined with powder metallurgy. The current-carrying tribological properties of CF-Al2O3/Cu composites were investigated on an electrical damage test system at different loads and currents.

Findings

As the load increases, the wear mechanism of the composite changes from abrasive wear to delamination wear. As the current increases, the oxidation wear and arc erosion of the composites gradually intensified. Under the service parameters of 0–25 A and 30–40 N, the composite has relatively stable current-carrying tribological properties.

Originality/value

This paper could provide a theoretical basis for the practical application of CF-Al2O3/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 February 2015

Yuncai Zhao, Fei Yang and Yongming Guo

The purpose of this paper is to investigate the tribological properties of a textured lubricating wear-resistant coating modified by nano-SiC at a high temperature. Its aim is to…

Abstract

Purpose

The purpose of this paper is to investigate the tribological properties of a textured lubricating wear-resistant coating modified by nano-SiC at a high temperature. Its aim is to explore the influence of a new composite method on the organisation and structure of sprayed coatings as well as the evolution rules governing their high-temperature tribological properties.

Design/methodology/approach

A KF301/WS2 lubricating, wear-resisting, coating was prepared on matrix material GCr15 by applying supersonic plasma spraying technology. On the basis of this sample, using nano-SiC particles as a filler, the KF301/WS2 nano-modified coating with its round, pit-type texture was prepared by laser re-melting technology and a surface texturing technique. Two kinds of coating micro-organisations and structures were examined by scanning electron microscopy, and the tribological properties of both the modified and conventional coatings were studied at a high temperature.

Findings

Results showed that nano-particles could effectively improve the coating micro-structure, and make the structure denser and more uniform, thus significantly increasing the wear resistance of the coating. When the friction and wear processes were stable, the friction coefficient decreased by 13 per cent, while the wear loss decreased by 45.9 per cent.

Originality/value

This research concentrating on the study of the process and performance of coatings doped with nano-particles by laser re-melting incorporating simultaneous surface texturing, and studies of their high-temperature tribological properties. That is because applying nano-particle modification technology to the development of wear-resistant coatings, and by applying the nano-particles to such coatings by thermal spraying technology, they can achieve a modification of the coating which makes the structure denser and more uniform.

Details

Industrial Lubrication and Tribology, vol. 67 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2022

Cuicui Chen, Qian Yang, Qingan Chen, Yanhui Wang, Dong Xu, Hezong Li, Xiliang Zhang, Christopher M. Harvey and Jiwei Liu

This study aims to investigate the effects of graphite-MoS2 composite solid lubricant on the tribological properties of copper-based bearing materials under dry conditions.

Abstract

Purpose

This study aims to investigate the effects of graphite-MoS2 composite solid lubricant on the tribological properties of copper-based bearing materials under dry conditions.

Design/methodology/approach

The mixture of Graphite-MoS2 was inlaid in ZQSn6-6–3 tin bronze and ZQAl9-4 aluminum bronze matrix. These copper-embedded self-lubricating bearing materials were considered in friction pairs with 2Cr13 stainless steel, and their tribological properties were studied by using an MM200 wear test machine.

Findings

The results show that the friction coefficients and wear rates of copper-embedded self-lubricating bearing materials are lower than those of the ordinary copper-based bearing materials. The wear performance of the tin bronze inlaid self-lubricating bearing material is better than that of the aluminum bronze inlaid self-lubricating bearing material. The wear mechanism of the tin bronze bearing material is mainly adhesive wear, and that of the aluminum bronze bearing material is mainly grinding wear, oxidation wear and adhesive wear. The copper-embedded self-lubricating bearing materials had no obvious abrasion, whereas the aluminum bronze inlaid self-lubricating bearing material exhibited deep furrows and obvious abrasion under high loads.

Originality/value

These results are helpful for the application of copper-embedded self-lubricating bearing materials.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2020

Bin Xiao, Xiaolin Zheng, Yi Zhou, Dan Yao and Yang Wan

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Abstract

Purpose

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Design/methodology/approach

The water-lubricated rubber bearings under various normal loads and sliding speeds were carried out on the ring-block friction test, and the wear morphology is test conducted by using scanning electron microscope.

Findings

The results indicate that the surface of water-lubricated rubber bearings has a more alternative friction coefficient and wear rate under seawater than other lubricate conditions. The seawater not only acts as a lubricating medium but also brings microstructure while corroding the rubber interface, thereby further enhancing the lubricating effect and storing abrasive debris.

Originality/value

In this paper, tribological properties of the water-lubricated rubber bearing on ring-block friction test has been investigated. Water-lubricated rubber bearing was carried out on various lubricate conditions, and the friction coefficient, wear rate and worn surface were analyzed. Also, the effects of sliding speeds were investigated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0204/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 August 2023

Jiayuan Yan, Xiaoliang Zhang and Yanming Wang

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in…

Abstract

Purpose

As a high-performance engineering plastic, polyimide (PI) is widely used in the aerospace, electronics and automotive industries. This paper aims to review the latest progress in the tribological properties of PI-based composites, especially the effects of nanofiller selection, composite structure design and material modification on the tribological and mechanical properties of PI-matrix composites.

Design/methodology/approach

The preparation technology of PI and its composites is introduced and the effects of carbon nanotubes (CNTs), carbon fibers (CFs), graphene and its derivatives on the mechanical and tribological properties of PI-based composites are discussed. The effects of different nanofillers on tensile strength, tensile modulus, coefficient of friction and wear rate of PI-based composites are compared.

Findings

CNTs can serve as the strengthening and lubricating phase of PI, whereas CFs can significantly enhance the mechanical properties of the matrix. Two-dimensional graphene and its derivatives have a high modulus of elasticity and self-lubricating properties, making them ideal nanofillers to improve the lubrication performance of PI. In addition, copolymerization can improve the fracture toughness and impact resistance of PI, thereby enhancing its mechanical properties.

Originality/value

The mechanical and tribological properties of PI matrix composites vary depending on the nanofiller. Compared with nanofibers and nanoparticles, layered reinforcements can better improve the friction properties of PI composites. The synergistic effect of different composite fillers will become an important research system in the field of tribology in the future.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 July 2017

Joao Luiz do Vale, Carlos Henrique da Silva and Carlos M.G. da Silva Cruz

The purpose of this article is to discuss the tribological behavior of polytetrafluoroethylene (PTFE) and property changes imposed by wear tests.

Abstract

Purpose

The purpose of this article is to discuss the tribological behavior of polytetrafluoroethylene (PTFE) and property changes imposed by wear tests.

Design/methodology/approach

Long-duration dry wear tests were carried out in a sliding bearing on shaft tribometer. Differential Scanning Calorimetry (DSC) and Fourier Transformed Infrared Spectroscopy (FTIR) analyses were performed in the PTFE in its original condition and after the tests.

Findings

The wear products merged in multilayer films and were expelled out of the test sequence. Through DSC and FTIR analyses in the polymeric material, before and after tests, it was possible to verify an increase of the crystallinity degree of PTFE, as well as absence of crystalline fusion of the material. The wear products presented changes in the infrared spectra, which suggests the occurrence of some bonds of hydrogen and oxygen.

Originality/value

It was verified on correlation that fibril mechanism, which occurred during PTFE wear, and its crystallinity degree increase. Also, analysis of PTFE wear products showed CO and CH bonds, which were imposed by wear test.

Details

Industrial Lubrication and Tribology, vol. 69 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2011

Raquel Bayón, Cristina Zubizarreta, Roman Nevshupa, Juan Carlos Rodriguez, Xana Fernández, Unai Ruiz de Gopegui and Amaya Igartua

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on nitrided F1272…

Abstract

Purpose

The aim of this work is the study the tribological behaviour and tribocorrosion resistance of newly developed multilayer PVD coatings Cr/CrN and CrN/ZrCN applied on nitrided F1272 steel for gear applications.

Design/methodology/approach

Tribological characterization has been completed by several tribological tests performed under ball‐on‐disc configuration, extreme pressure tests to determine the maximum load before the films failure and rolling‐sliding tests under line‐contact conditions (35‐40 per cent of sliding). The response of the different coatings to sodium chloride aggressive environment has been simulated by accelerated tribocorrosion tests, combining simultaneously chemical and mechanical factors. The synergistic effect of wear on corrosion behaviour and vice versa, has been studied in order to compare the protective properties of the different PVD coatings developed.

Findings

Cr/CrN PVD coating improves wear in almost a 90 per cent compared to the nitrided substrate, presenting a similar behaviour to this one under extreme pressure conditions. CrN/ZrCN coating also improved substrate wear and especially good behaviour for this coating was observed under extreme pressure conditions. Cr/CrN coating strongly decreases micropitting and scuffing effect when it is tested under rolling‐sliding configuration. Under micro‐pitting conditions, coating protects the substrate and reduces the fatigue of uncoated discs. When adhesive wear (scuffing) is studied also Cr/CrN improves notable the nitrided steel performance. Under simultaneously corrosion‐wear conditions, Cr/CrN coating registered the lowest material loss because in this case only corrosion effect contributed to the coated surface degradation being the mechanical contribution inappreciable.

Originality/value

New multilayer coatings with improved wear performance and tribocorrosion resistance have been developed and comprehensively characterized. These coatings can be used in advanced gears for corrosive environmental conditions as well as with biodegradable lubricants.

Details

Industrial Lubrication and Tribology, vol. 63 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2008

Xiangqiong Zeng, Hongling Yi, Hua Wu, Jing Li, Tianhui Ren, Weimin Liu and Zhongyi He

This paper seeks to study the tribological properties, corrosion inhibition properties and action mechanism of two triazine‐containing disulfides, TOSS and TOMA, as additives in…

Abstract

Purpose

This paper seeks to study the tribological properties, corrosion inhibition properties and action mechanism of two triazine‐containing disulfides, TOSS and TOMA, as additives in combustion engine base oil (5CST); those properties of an alkyl disulfide dodecyl disulfide and zinc dialkyldithiophosphate (ZDDP) were also evaluated for comparison to discover whether these additives could be used as potential substitute candidates for ZDDP.

Design/methodology/approach

Their tribological performances were evaluated using a four‐ball machine. The worn surfaces were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS)

Findings

The three additives have good load‐carrying capacity and corrosion inhibition properties comparable with those of ZDDP. The anti‐wear properties of the triazine‐containing disulfides TOSS and TOMA are good but a little inferior to those of ZDDP. The friction‐reducing performances of the additives are better than those of ZDDP. The XPS results show that absorption and tribochemical reactions occur to generate a complex boundary lubrication films comprising inorganic sulfate, sulfide, iron oxide and organic nitrogen, and sulfur‐containing compounds.

Research limitations/implications

The anti‐oxidation properties are still to be estimated, and the synergistic effectiveness with other additives could be demonstrated.

Practical implications

These additives are good extreme pressure and anti‐wear additives in combustion engine base oil and, through further modification of molecular structure or combination with other additives, they may be a potential replacement for ZDDP.

Originality/value

To reduce the cost, the products synthesized were not finely separated. Their tribological properties as additives in the widely used combustion engine base oil were first investigated and results indicate that they show excellent performances.

Details

Industrial Lubrication and Tribology, vol. 60 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000