Search results

1 – 10 of 101
Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 November 2023

Huimin Yang, Chunlin Ye, Yi Li and Songwei Zhang

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the…

Abstract

Purpose

This study aims to probe the applicability of 2-mercaptobenzothiazole (MBT) functionalized ionic liquids (ILs) as additives in lithium complex grease (LCG) by researching the corrosion inhibiting, rheological and tribological performances.

Design/methodology/approach

Electrochemical tests such as electrochemical impedance spectroscopy and potentiodynamic polarization curves were used on Gamry electrochemical workstation to research the corrosion inhibition properties of ILs in 1.0 M HCl corrosive solution. The rheological properties of different grease samples were tested on a rheometer. The tribological properties were investigated on SRV-V oscillating reciprocating friction and wear tester. Scanning electron microscope, X-ray spectrometer and X-ray photoelectron spectrometer were used to characterize the lubricating mechanism.

Findings

The 2-MBT functionalized ILs have excellent corrosion inhibition properties. When used as additives in LCG, they both exhibited enhancing effects on thermostability, colloid stability and structural recoverability, and furthermore, outstanding friction-reducing and antiwear properties were also obtained. Surface analysis indicated that the superior lubricating performances of 2-MBT functionalized ILs were mainly ascribed to the formation of tribochemical products on wear tracks, including organic compounds with C–O bond, Fe2O3 and FeS2.

Originality/value

The 2-MBT-based ILs synthesized in this study were multifunctional additives with excellent corrosion inhibiting and tribological properties, which would have a very broad application prospect in lubricating grease industry.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2023

Xiaolong Lu, Xudong Sui, Xiao Zhang, Zhen Yan and Junying Hao

This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings.

Abstract

Purpose

This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings.

Design/methodology/approach

The MoS2-V coatings are fabricated via tuning V target current by magnetron sputtering technique. The structural characteristic and elemental content of the coatings are measured by field emission scanning electron microscopy, X-ray diffractometer, electron probe X-ray micro-analyzer, Raman, X-ray photoelectron spectroscopy, high resolution transmission electron microscope and energy dispersive spectrometer. The hardness of the deposited coatings are tested by a nanoindentation technique. The vacuum tribological properties of MoS2-V coatings are studied by a ball-on-disc tribometer.

Findings

Introducing V into the MoS2 coatings results in a more compact microstructure. The hardness of the coatings increases with the doping of V. The MoS2-V coating deposited at a current of 0.2 A obtains the lowest friction coefficient (0.043) under vacuum. As the amount of V doping increases, the wear rate of the coating decreases first and then increases, among which the coating deposited at a current of 0.5 A has the lowest wear rate of 2.2 × 10–6 mm3/N·m.

Originality/value

This work elucidates the role of V doping on the lubrication mechanism of MoS2 coatings in a vacuum environment, and the MoS2-V coating is expected to be applied as a solid lubricant in space environment.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 November 2023

Yingxiang Zhao, Junde Guo, Xiaoni Yan, Shan Du, Min Gong, Biao Sun, Junwen Shi and Wen Deng

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a…

Abstract

Purpose

The purpose of this paper is to investigate the friction and wear mechanisms in copper-based self-lubricating composites with MoS2 as the lubricating phase, which provides a theoretical basis for subsequent research on high-performance copper-based self-lubricating materials.

Design/methodology/approach

Friction tests were performed at a speed of 100 r/min, a load of 10 N, a friction radius of 5 mm and a sliding speed of 30 min. Friction experiments were carried out at RT-500°C. The phase composition of the samples was characterized by X-ray diffraction of Cu Ka radiation, and the microstructure, morphology and elemental distribution were characterized by scanning electron microscopy and energy dispersive spectroscopy. Reactants and valences formed during the wear process were analyzed by X-ray photoelectron spectroscopy.

Findings

The addition of MoS2 can effectively improve friction-reducing and anti-wear action of the matrix, which is beneficial to form a lubricating film on the sliding track. After analyzing different changing mechanism of the sliding tracks, the oxides and sulfides of MoS2, MoO2, Cu2O, CuO and Ni(OH)2 were detected to form a synergetic lubricating film on the sliding track, which is responsible for the excellent tribological properties from room to elevated temperature.

Research limitations/implications

For self-lubrication Cu–Sn–Ni–MoS2 material in engineering field, there are still few available references on high-temperature application.

Practical implications

This paper provides a theoretical basis for the following research on copper-based self-lubricating materials with high performance.

Originality/value

With this statement, the authors hereby certify that the manuscript is the results of their own effort and ability. They have indicated all quotes, citations and references. Furthermore, the authors have not submitted any essay, paper or thesis with similar content elsewhere. No conflict of interest exits in the submission of this manuscript.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 October 2023

Fatma Bakal Gumus and Ahmet Yapici

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano…

Abstract

Purpose

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano boron nitride (h-BN)-reinforced basalt fabric (BF)/epoxy composites produced by hand lay-up and vacuum bagging technique. h-BN particles doped to composite materials increased the tensile, bending and impact strength of the composite at certain rates while 1 Wt. % h- BN addition shows the highest tensile and flexural strength.

Design/methodology/approach

The epoxy resin was doped with h-BN nanopowder at the certain rates (0, 1, 2 and 4 Wt.%) and the epoxy: hardener ratios used in the study were selected as 80%: 20% by weight. Then, with the aid of a roller by hand lay-up method, a mixture of epoxy + hardeners containing nanoparticles and nanoparticle-free were fed onto BFs, 12 layers of each dimension 30 cm × 30 cm. The surplus epoxy resin was moved away from the composite sheets using the vacuum bagging process and left to cure at room temperature for 24 h. ASTM D3039 for tensile, D7264 for three-point bending and D256 for Izod impact test were performed for the mechanical tests. After the tensile test, the morphologies of the fracture surface were examined with a stereomicroscope and various failure mechanisms are highlighted.

Findings

In this study, a series of basalt/epoxy composites with h-BN nanopowders have been prepared to identify the effect of filler ratio on mechanical properties. It has been known from the results of mechanical experiments that the addition of h-BN improves the mechanical performance of materials at a certain rate. The tensile and flexural strengths of h-BN doped composites, increase for concentrations of 1 Wt.% h-BN, but decrease with the increasing content of it. The basalt/epoxy resin composite with higher mechanical properties could be a potential material in the automotive and aerospace industries.

Originality/value

The aim of this study is to contribute to literature within the context of this new combination of composites and their mechanical properties, failure mechanisms. It presents detailed characterization of each composite by using X-ray differaction (XRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2023

Yazhou Mao, Daqing Li, Lilin Li and Jingyang Zheng

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing…

Abstract

Purpose

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing were represented. It provides a design direction for solving the tribological problem of rotor-bearing system.

Design/methodology/approach

In this paper, the variation of surface texture parameters (e.g. texture diameter, d; area density, sp; and depth, hp) were analyzed based on finite difference method. The optimal surface texture parameters were obtained by designing orthogonal experiments, and the relationship between friction and wear properties and microstructure was studied via combining electron probe microanalyzer, scanning electron microscope, X-ray diffractometer and friction and wear testing machine.

Findings

Dimensionless film pressure P increased as the d increased, whereas P first increased and then decreased as the sp and hp increased, and the maximum P was got as sp = 15% and hp = 25 µm, respectively. The friction coefficient of textured surface with suitable parameters was effectively reduced and the textured surface with the best antifriction effect was 5#. Orthogonal experimental design analysis showed that the influence order of factors on friction coefficient was as follows: sp > sp × d > d > d × hp > hp > sp × hp and the friction coefficient first decreased and then increased as the sp, d and hp increased. In addition, the friction and wear mechanism of textured bearing were three body friction and abrasive wear as the matrix structure and hard phase were a single β phase and Mn5Si3, respectively. While the antifriction mechanism of textured surface was able to store abrasive particles and secondary hydrodynamic lubrication was formed.

Originality/value

The sample with reasonable texture parameter design can effectively reduce friction and wear of hydrodynamic journal bearing without reducing the service life, which can provide a reference for improving the lubrication performance and mechanical efficiency of rotor-bearing system.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 101