Search results

1 – 10 of 467
Article
Publication date: 20 September 2022

Pravin H. Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

Predicting the critical velocity is crucial at the instability threshold for shell and tube heat exchangers in order to prevent tube failure due to vibrations. In this study, the…

Abstract

Purpose

Predicting the critical velocity is crucial at the instability threshold for shell and tube heat exchangers in order to prevent tube failure due to vibrations. In this study, the vibration response of an aluminum tube bundle subjected to water cross flow was analyzed experimentally. Aluminum tubes are preferred over steel tubes because of aluminum tubes' excellent corrosion resistance, ease of manufacture, and high thermal efficiency.

Design/methodology/approach

The fluid elastic instability and vortex shedding mechanisms in a finned tube array of aluminum tubes with a base tube diameter of 19.05 mm and pitch of 34 mm were investigated. The current study considers parallel triangular finned tube arrays with fin heights of 3 mm and 6 mm with a uniform fin thickness and fin pitch. The plain tube array was tested to compare the finned tube array results. The tube vibration response was measured using an accelerometer mounted on the middle tube of the third row. In order to define the fluid elastic instability behavior of various tube arrays, the critical velocity at the instability threshold is measured. By finding the Strouhal number at the small peaks before instability, the vortex shedding behavior of the tube arrays is examined.

Findings

The results reveal that the critical velocity at instability for coarse finned tube arrays increases as the fin height increases. The effect of the tube material is evaluated by comparing the results with those previously reported for parallel triangular tube arrays made of steel. Finally, the occurrence of vortex shedding in a tube array is confirmed based on the Reynolds number and Strouhal number relationship. The instability constant K for the plain tube array of steel and aluminum material are 4.97 and 4.87, respectively.

Originality/value

This paper provides the research findings on the effect of fin height on coarse density finned tube array. This will add substantial knowledge to the literature in the field of fluid elastic instability and vortex shedding, which is needed for the safe functioning of shell and tube heat exchangers.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 February 2018

Ranganayakulu Chennu

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of…

Abstract

Purpose

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of various types of heat transfer surfaces such as offset strip fins, wavy fins, rectangular fins, triangular fins, triangular and rectangular perforated fins in terms of Colburn “j” and Fanning friction “f” factors.

Design/methodology/approach

Numerical methods play a major role for analysis of compact plate-fin heat exchangers, which are cost-effective and fast. This paper presents the on-going research and work carried out earlier for single-phase steady-state heat transfer and pressure drop analysis on CHE passages and fins. An analysis of a cross-flow plate-fin compact heat exchanger, accounting for the individual effects of two-dimensional longitudinal heat conduction through the exchanger wall, inlet fluid flow maldistribution and inlet temperature non-uniformity are carried out using a Finite Element Method (FEM).

Findings

The performance deterioration of high-efficiency cross-flow plate-fin compact heat exchangers have been reviewed with the combined effects of wall longitudinal heat conduction and inlet fluid flow/temperature non-uniformity using a dedicated FEM analysis. It is found that the performance deterioration is quite significant in some typical applications due to the effects of wall longitudinal heat conduction and inlet fluid flow non-uniformity on cross-flow plate-fin heat exchangers. A Computational Fluid Dynamics (CFD) program FLUENT has been used to predict the design data in terms of “j” and “f” factors for plate-fin heat exchanger fins. The suitable design data are generated using CFD analysis covering the laminar, transition and turbulent flow regimes for various types of fins.

Originality/value

The correlations for the friction factor “f” and Colburn factor “j” have been found to be good. The correlations can be used by the heat exchanger designers and can reduce the number of tests and modification of the prototype to a minimum for similar applications and types of fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 June 2019

B.J. Gireesha, G. Sowmya and Madhu Macha

This paper aims to study the temperature performance with natural convection and radiation effect on a porous fin in fully wet condition.

Abstract

Purpose

This paper aims to study the temperature performance with natural convection and radiation effect on a porous fin in fully wet condition.

Design/methodology/approach

The finite element method (FEM) is applied to generate numerical solution of the obtained non-dimensional ordinary differential equation containing highly nonlinear terms. The parameters which impact on the heat transfer of fin have been scrutinized by means of plotted graphs.

Findings

The porous fin is taken for the analysis in radial profile moving with constant velocity. Here, the thermal conductivity is considered to be temperature dependent. The Darcy’s model has been implemented to study the heat transfer analysis.

Originality/value

The paper is genuine in its type, and there are hardly any works on fins as per the authors’ knowledge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1933

D.R. Pye

IT has been stated above that the rate of heat transfer is closely proportional to the temperature difference between the plate and the free air stream, and over the laminar…

Abstract

IT has been stated above that the rate of heat transfer is closely proportional to the temperature difference between the plate and the free air stream, and over the laminar portion it will also be proportional to the conductivity of the air. It remains to consider to what extent the actual temperature of the air in the boundary layer will influence the rate of heat transfer. The conductivity of air increases with temperature by reason of the increased molecular velocities, and we might expect, therefore, that the hotter the surface the greater will be the rate of heat transfer per unit of temperature difference above that of the air. This is, in fact, found to be the case.

Details

Aircraft Engineering and Aerospace Technology, vol. 5 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 17 December 2019

G. Sowmya, B.J. Gireesha and O.D. Makinde

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.

Design/methodology/approach

Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.

Findings

The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.

Originality/value

The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 April 2020

G. Sowmya, Gireesha B.J., Muhammad Ijaz Khan, Shaher Momani and Tasawar Hayat

The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal…

Abstract

Purpose

The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal profile. The fin considered is that of a functionally graded material (FGM). Based on the spatial dependency of thermal conductivity, three cases such as linear, quadratic and exponential FGMs are analysed.

Design/methodology/approach

The governing equations are nondimensionalised and solved by applying Runge-Kutta-Fehlberg fourth-fifth order technique.

Findings

The parametric investigation is executed to access the significance of the pertinent parameters on the thermal feature of the fin and heat transmit rate. The outcomes are portrayed in a graphical form.

Originality/value

No such study has yet been published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2005

Kang Eu Ong, Kor Oon Lee, K.N. Seetharamu, I.A. Azid, G.A. Quadir, Z.A. Zainal and Teck Joo Goh

To find the optimal geometries of rectangular and cylindrical fins for maximum heat dissipation.

1042

Abstract

Purpose

To find the optimal geometries of rectangular and cylindrical fins for maximum heat dissipation.

Design/methodology/approach

The objective function for finding the optimized profiles of fins are solved by using the genetic algorithms (GAs). A range of fin shapes are investigated and the optimum solutions for various profile area are obtained.

Findings

Provide information to thermal engineers to what extent any particular extended surface or fin arrangements could improve heat dissipation from a surface to the surrounding fluid. Smaller fin volume in fin design is preferable as the heat is dissipated more effectively.

Originality/value

A new method of using GA for optimization of fins is used here. The value of this paper lies in providing data for selecting suitable fins for thermal management in electronic systems.

Research limitations/implications

Limited to cases where the correlations for heat transfer coefficients are valid.

Practical implications

A very useful finding for practising thermal engineer especially in the area of electronic packaging as the parameters for the fin design can easily be found for any chosen profile area.

Details

Microelectronics International, vol. 22 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 September 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Sangtao Wang

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop…

Abstract

Purpose

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop penalty. The purpose of this paper is to study the effect of dimple depth and dimple diameter on the target surface heat transfer and the inlet to outlet friction factor.

Design/methodology/approach

The study is carried out by using the numerical simulations. The impingement flow is directly impinging on the dimple and released from the film holes after passing the double wall chamber. The ratio between dimple depth and dimple diameter is varied from 0 to 0.4 and the ratio between dimple diameter and impingement hole diameter is ranging from 0.5 to 3. The Reynolds number is between 10,000 and 70,000. Results of the target surface Nusselt number, friction factor and flow structures are included. For convenience of comparison, the double wall cooling structure without the dimple is considered as the baseline.

Findings

It is found that the dimple can effectively enhance the target surface heat transfer due to thinning of the flow boundary layer and flow reattachment as well as flow recirculation outside the dimple near the dimple rim especially for the large Re number condition. However, the stagnation point heat transfer is reduced. It is also found that for a large dimple depth or large dimple diameter, a salient heat transfer reduction occurs for the toroidal vortex. The thermal performance indicates that the intensity of the heat transfer enhancement depends upon the dimple depth and dimple diameter

Originality/value

This is the first time to adopt a dimple into a double wall cooling structure. It suggests that the target surface heat transfer in a double wall cooling structure can be increased by the use of the dimple. However, the heat transfer characteristic is sensitive for the different dimple diameter and dimple depth which may result in a different flow behavior

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2023

Pravin Hindurao Yadav, Sandeep R. Desai and Dillip Kumar Mohanty

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a…

Abstract

Purpose

The purpose of this paper is to present investigations on the significant influence of the tube material and fin density on fluid elastic instability and vortex shedding in a parallel triangular finned tube array subjected to water cross flow.

Design/methodology/approach

The experiment was conducted on finned tube arrays with a fin height of 6 mm and fin density of 3 fins per inch (fpi) and 9 fpi. A dedicated setup has been developed to examine fluid elastic instability and vortex shedding. Nine parallel triangular tube arrays with a pitch to tube diameter ratio of 1.78 were considered. The plain tube arrays, coarse finned tube arrays and fine finned tube arrays each of steel, copper and aluminium materials were tested. Plain tube arrays were tested to compare the results of the finned tube arrays having an effective tube diameter same as that of the plain tube.

Findings

A significant effect of fin density and tube material with a variable mass damping parameter was observed on the instability threshold. In the parallel triangular finned tube array subjected to water cross flow, a delay in the instability threshold was observed with an increase in fin density. For steel and aluminium tube arrays, the natural frequency is 9.77 Hz and 10.38 Hz, which is close to each other, whereas natural frequency of the copper tubes is 7.40 Hz. The Connors’ stability constant K for steel and aluminium tube arrays is 4.78 and 4.87, respectively, whereas it is 5.76 for copper tube arrays, which increases considerably compared to aluminum and steel tube arrays. The existence of vortex shedding is confirmed by comparing experimental results with Owen’s hypothesis and the Strouhal number and Reynolds number relationship.

Originality/value

This paper’s results contribute to understand the effect of tube materials and fin density on fluid elastic instability threshold of finned tube arrays subjected to water cross flow.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 August 2021

Pravin Hindurao Yadav and Dillip kumar Mohanty

This paper aims to analyze the effect of fin geometry on mechanisms of flow induced vibration. Finned tube arrays are used in a heat exchanger to increase its efficiency…

Abstract

Purpose

This paper aims to analyze the effect of fin geometry on mechanisms of flow induced vibration. Finned tube arrays are used in a heat exchanger to increase its efficiency. Therefore, it is necessary to investigate the effect of geometric parameters of the fin fluid elastic instability and vortex shedding. In this paper, the effect of fin height, fin density and tube pitch ratio for parallel triangular tube array on fluid elastic instability and vortex shedding is analyzed.

Design/methodology/approach

Experimental analysis was carried out on a parallel triangular finned tube array with a pitch ratio of 1.79 subjected to water crossflow. The experimentation aims to study fluid elastic instability and vortex-induced vibration mechanism responsible for flow induced vibration for finned tube array. A fully flexible finned tube array of the copper tube was used with its base diameter of 19.05 mm and thickness of 2 mm. Over the tube surface, crimped fins of height 6 mm and the same material are welded spirally with fin density 8.47 mm and 2.82 mm. Experimental analysis was carried out on a test setup developed for the same. The results obtained for the finned tube array were compared with those for the plain tube array with the same base tube diameter.

Findings

For parallel triangular tube array of copper material, test results show that critical velocity increases with an increase in fin pitch density for low pitch tube array. Before the occurrence of instability, the rate of growth in tube vibrations is high for plain tubes compared to that with fin tubes. The results based on Owen’s hypothesis show vortex shedding before the occurrence of fluid elastic instability. The effect of fin geometry on vortex-induced forces is analyzed. For the tube array pattern understudy, the values of Conner’s constant K for coarse fin-tube and fine fin tube array are obtained, respectively, 6.14 and 7.25.

Originality/value

This paper fulfills the need for research on the effect of fin geometry on fluid elastic instability and Vortex shedding on a tube array subjected to water cross flow when the pitch ratio is less than two, i.e. with a low pitch ratio.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 467