Search results

1 – 10 of 136
Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 October 2018

Hesam Bakhshi, Erfan Khodabandeh, Omidali Akbari, Davood Toghraie, Mohammad Joshaghani and Alireza Rahbari

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect…

Abstract

Purpose

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect of changes in geometric parameters, including internal and external dimensions on the behavior of heat transfer and fluid flow. For each parameter, an optimum ratio will be presented.

Design/methodology/approach

The results showed that in a channel cell, changing any geometric parameter may affect the temperature and flow field, even though the volume of the channel is kept constant. For a relatively small hydraulic diameter, microchannels with different angles have a similar dimensionless heat flux, while channels with bigger dimensions show various values of dimensionless heat flux. By increasing the angles of trapezoidal microchannels, dimensionless heat flux per unit of volume increases. As a result, the maximum and minimum heat transfer rate occurs in a trapezoidal microchannel with 75° and 30 internal’s, respectively. In the study of dimensionless heat flux rate with hydraulic diameter variations, an optimum hydraulic diameter (Dh) was observed in which the heat transfer rate per unit volume attains maximum value.

Findings

This optimum state is predicted to happen at a side angle of 75° and hydraulic diameter of 290 µm. In addition, in trapezoidal microchannel with higher aspect ratio, dimensionless heat flux rate is lower. Changing side angles of the channels and pressure drop have the same effect on pressure drop. For a constant pressure drop, if changing the side angles causes an increase in the rectangular area of the channel cross-section and the effect of the sides are not felt by the fluid, then the dimensionless heat flux will increase. By increasing the internal aspect ratio (t_2/t_3), the amount of t_3 decreases, and consequently, the conduction resistance of the hot surface decreases.

Originality/value

The effects of geometry of the microchannel, including internal and external dimensions on the behavior of heat transfer and fluid flow for pressure ranges between 2 and 8 kPa.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2018

Fakhrodin Lalegani, Mohammad Reza Saffarian, Ahmadreza Moradi and Ebrahim Tavousi

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific…

315

Abstract

Purpose

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific effect on microchannel performances. This paper aims to investigate the changes in friction and pressure drop in the microchannels by considering the different roughness elements on microchannel wall and changes in elementary geometry and flow conditions. Results show a significant effect of roughness on the pressure drop and friction.

Design/methodology/approach

Two-dimensional fluid flow in the rough microchannels is analyzed using FLUENT. Microchannels have a height of 50 µm. Water at room temperature (25°C) has been used as working fluid. The Reynolds numbers are considered in laminar flow range and from 50 to 300.

Findings

The results show that the value of friction factor reduces nonlinearly with an increase in Reynolds number. But, the pressure drops and the Poiseuille number in the microchannels increase with an increase in Reynolds number. The values of the pressure drop and the friction factor increase by increasing the height and size of the roughness elements, but these values reduce with an increase in the distance of roughness elements.

Originality/value

The roughness elements types in this research are rectangular, trapezoidal, elliptical, triangular and complex (composed of multiple types of roughness elements). The effects of the Reynolds number, roughness height, roughness distance and roughness size on the pressure drop and friction in the rough microchannels are investigated and discussed. Furthermore, differences between the effects of five types of roughness elements are identified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

Marjan Goodarzi, Iskander Tlili, Zhe Tian and Mohammad Reza Safaei

This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and…

Abstract

Purpose

This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and square).

Design/methodology/approach

The nanofluid is graphene nanoplatelets-silver/water, and the heat transfer in laminar flow was investigated. The range of coolant Reynolds number in this investigation was 200 ≤ Re ≤ 1000, and the concentrations of nano-sheets were from 0 to 0.1 vol. %.

Findings

Results show that higher temperature leads to smaller Nusselt number, pressure drop and pumping power, and increasing solid nano-sheet volume fraction results in an expected increase in heat transfer. However, the influence of temperature on the friction factor is insignificant. In addition, by increasing the Reynolds number, the values of pressure drop, pumping power and Nusselt number augments, but friction factor diminishes.

Research limitations/implications

Data extracted from a recent experimental work were used to obtain thermo-physical properties of nanofluids.

Originality/value

The effects of temperature, microchannel cross-section shape, the volume concentration of nanoparticles and Reynolds number on thermal and hydraulics behavior of the nanofluid were investigated. Results are presented in terms of velocity, Nusselt number, pressure drop, friction loss and pumping power in various conditions. Validation of the model against previous papers showed satisfactory agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 April 2019

Navid Ahmadi Cheloii, Omid Ali Akbari and Davood Toghraie

This study aims to numerically investigate the heat transfer and laminar forced and two-phase flow of Water/Cu nanofluid in a rectangular microchannel with oblique ribs with angle…

Abstract

Purpose

This study aims to numerically investigate the heat transfer and laminar forced and two-phase flow of Water/Cu nanofluid in a rectangular microchannel with oblique ribs with angle of attacks equal to 0-45°. This simulation was conducted in the range of Reynolds numbers of 5-120 in volume fractions of 0, 2 and 4 per cent of solid nanoparticles in three-dimensional space.

Design/methodology/approach

This study investigates the effect of the changes of angle of attack of rectangular rib on heat transfer and hydrodynamics of two-phase flow. This study was done in three-dimensional space and simulation was done with finite volume method. SIMPLEC algorithm and second-order discretization of equations were used to increase the accuracy of results. The usage of nanofluid, application of rips with different angles of attacks and using the two-phase mixture method is the distinction of this paper compared with other studies.

Findings

The results of this research revealed that the changing angle of attack of ribs is an effective factor in heat transfer enhancement. On the other hand, the existence of rib on the internal surfaces of a microchannel increases friction coefficient. By increasing the volume fraction of nanoparticles, due to the augmentation of fluid density and viscosity, the pressure drop increases significantly. For all of the angle of attacks studied in this paper, the maximum rate of performance evaluation criterion has been obtained in Reynolds number of 30 and the minimum amount of performance evaluation criterion was been obtained in Reynolds numbers of 5 and 120.

Originality/value

Many studies have been done in the field of heat transfer in ribbed microchannel. In this paper, the laminar flow in the ribbed microchannel Water/Cu nanofluid in a rectangular microchannel by using two-phase mixture method is numerically investigated with different volume fractions (0-4 per cent), Reynolds numbers (5-120) and angle of attacks of rectangular rib in the indented microchannel (0-45°).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 November 2021

Karthikeyan Paramanandam, Venkatachalapathy S. and Balamurugan Srinivasan

The purpose of this paper is to study the flow and heat transfer characteristics of microchannel heatsinks with ribs, cavities and secondary channels. The influence of length and…

Abstract

Purpose

The purpose of this paper is to study the flow and heat transfer characteristics of microchannel heatsinks with ribs, cavities and secondary channels. The influence of length and width of the ribs on heat transfer enhancement, secondary flows, flow distribution and temperature distribution are examined at different Reynolds numbers. The effectiveness of each heatsink is evaluated using the performance factor.

Design/methodology/approach

A three-dimensional solid-fluid conjugate heat transfer numerical model is used to study the flow and heat transfer characteristics in microchannels. One symmetrical channel is adopted for the simulation to reduce the computational cost and time. Flow inside the channels is assumed to be single-phase and laminar. The governing equations are solved using finite volume method.

Findings

The numerical results are analyzed in terms of average Nusselt number ratio, average base temperature, friction factor ratio, pressure variation inside the channel, temperature distribution, velocity distribution inside the channel, mass flow rate distribution inside the secondary channels and performance factor of each microchannels. Results indicate that impact of rib width is higher in enhancing the heat transfer when compared with its length but with a penalty on the pressure drop. The combined effects of secondary channels, ribs and cavities helps to lower the temperature of the microchannel heat sink and enhances the heat transfer rate.

Practical implications

The fabrication of microchannels are complex, but recent advancements in the additive manufacturing techniques makes the fabrication of the design considered in this numerical study feasible.

Originality/value

The proposed microchannel heatsink can be used in practical applications to reduce the thermal resistance, and it augments the heat transfer rate when compared with the baseline design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2018

Esmaeil Jalali and Arash Karimipour

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by…

Abstract

Purpose

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by injecting the lower wall. The upper wall of the microchannel is 303 K at temperature TH. On the lower wall of the microchannel, there are three holes for flow injection. Other parts of the wall are insulated. In this paper, the effect of parameters such as Reynolds number, slip coefficient and volume fraction of nanoparticles is investigated.

Design/methodology/approach

The boundary condition of the slip velocity is considered on the upper and lower walls of the microchannel. In this work, the flow of nanofluid in the microchannel is considered to be slow, permanent and Newtonian. In the present study, the effect of injection through the microchannel wall on the slip velocity is examined for the first time.

Findings

The results are also presented as velocity profiles and Nusselt number diagrams. It was found that the Nusselt number increases with increasing the amount of slip coefficient of velocity and the weight percentage of solid nanoparticles. The rate of this increase is higher in the high values of the Reynolds number.

Originality/value

A novel paper concerned the simulation of cross-flow injection effects on the slip velocity and temperature domain of a nanofluid flow inside a microchannel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2021

Zahra Sarbazi and Faramarz Hormozi

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin…

Abstract

Purpose

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin cross-sections. The effect of the fin cross-section including semi-circular, rectangular and quadrant in two directions of flat and curved, and channel substrate materials of steel, aluminum, copper and titanium were examined. Finally, the analysis of thermal and frictional entropy generation in different channels is performed.

Design/methodology/approach

According to the numerical results, the highest heat transfer coefficients belong to the rectangular, quadrant 2, quadrant 1 and semi-circular fins compared to the channel without fin is 38.65%, 29.94%, 27.45% and 17.1%, respectively. Also, the highest performance evaluation criteria belong to the rectangular and quadrant 2 fins, which have 1.35 and 1.29, respectively. Based on the thermal conductivity of the substrate material, the best material is copper. According to the results of entropy analysis, the reduction of thermal irreversibility of the channel with rectangular, quadrant 1, quadrant 2 and semi-circular compared to non-finned channel is equal to 72%, 57%, 63% and 48%, respectively.

Findings

The rectangular and quadrant 2 fins are the best fins and the copper substrate material is the best material to reduce the entropy generation.

Originality/value

The silicon oxide/water nanofluid flow in the heat sink miniature channel with various fin shapes and the curvature angle against the fluid flow was simulated to increase the heat transfer performance. The whole test section is simulated in three-dimensional. Different channel materials have been investigated to find the best channel substrate material.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 May 2021

Mojtaba Sepehrnia, Hossein Khorasanizadeh and Mohammad Behshad Shafii

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat…

Abstract

Purpose

This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat flux and magnetic fields.

Design/methodology/approach

To investigate the effect of direction of Lorentz force the magnetic field has been applied: transversely in the x direction (Case I);transversely in the y direction (Case II); and parallel in the z direction (Case III). The three-dimensional governing equations with the associated boundary conditions for ferro-nanofluid flow and heat transfer have been solved by using an element-based finite volume method. The coupled algorithm has been used to solve the velocity and pressure fields. The convergence is reached when the accuracy of solutions attains 10–6 for the continuity and momentum equations and 10–9 for the energy equation.

Findings

According to thermal indicators the Case III has the best performance, but according to performance evaluation criterion (PEC) the Case II is the best. The simulation results show by increasing the Hartmann number from 0 to 12, there is an increase for PEC between 845.01% and 2997.39%, for thermal resistance between 155.91% and 262.35% and ratio of the maximum electronic chip temperature difference to heat flux between 155.16% and 289.59%. Also, the best thermo-hydraulic performance occurs at Hartmann number of 12, pressure drop of 10 kPa and volume fraction of 2%.

Research limitations/implications

The embedded electronic chip on the base plate generates heat flux of 60 kW/m2. Simulations have been performed for ferro-nanofluid with volume fractions of 1%, 2% and 3%, pressure drops of 10, 20 and 30 kPa and Hartmann numbers of 0, 3, 6, 9 and 12.

Practical implications

The authors obtained interesting results, which can be used as a design tool for magnetohydrodynamics micro pumps, microelectronic devices, micro heat exchanger and micro scale cooling systems.

Originality/value

Review of the literature indicated that there has been no study on the effects of magnetic field on thermal and thermo-hydraulic performances of ferro-nanofluid flow in a TMCHS, so far. In this three dimensional study, flow of ferro-nanofluid through a trapezoidal heat sink with five trapezoidal microchannels has been considered. In all of previous studies, in which the effect of magnetic field has been investigated, the magnetic field has been applied only in one direction. So as another innovation of the present research, the effect of applying magnetic field direction (transverse and parallel) on thermo-hydraulic behavior of TMCHS is investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Marjan Goodarzi, Saeed Javid, Ali Sajadifar, Mehdi Nojoomizadeh, Seyed Hossein Motaharipour, Quang-Vu Bach and Arash Karimipour

With respect to two new subjects, i.e. nanofluids and microchannels, in heat transfer systems and modern techniques used for building them, this paper aims to study on effect of…

Abstract

Purpose

With respect to two new subjects, i.e. nanofluids and microchannels, in heat transfer systems and modern techniques used for building them, this paper aims to study on effect of using aluminum oxide nanoparticles in non-Newtonian fluid of aqueous solution of carboxy-methyl cellulose in microtube and through application of different slip coefficients to achieve various qualities on surface of microtube.

Design/methodology/approach

Simultaneously, the effect of presence of nanoparticles and phenomenon of slip and temperature jump has been explored in non-Newtonian nanofluid in this essay. The assumption of homogeneity of nanofluid and fixed temperature of wall in microtube has been used in modeling processes.

Findings

The results have been presented as diagrams of velocity, temperature and Nusselt Number and the investigations have indicated that addition of nanoparticles to the base fluid and increase in microtube slip coefficient might improve rate of heat transfer in microtube.

Originality/value

The flow of non-Newtonian nanofluid of aqueous solution of carboxy methyl cellulose-aluminum oxide has been determined in a microtube for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 136